Autophagy is a self-digestive process regulated by an intricate network of factors able either to ensure the prosurvival function of autophagy or to convert it in a death pathway. Recently, the involvement of miRNAs in the regulation of autophagy networks has been reported. This review will summarize the main features of these small noncoding endogenous RNAs, focusing on their relevance in cancer and finally addressing their impact on autophagy.
View Article and Find Full Text PDFBackground: NH exchangers (NHEs) play a crucial role in regulating intra/extracellular pH, which is altered in cancer cells, and are therefore suitable targets to alter cancer cell metabolism in order to inhibit cell survival and proliferation. Among NHE inhibitors, amiloride family members are commonly used in clinical practice as diuretics; we focused on the amiloride HMA, reporting a net cytotoxic effect on a panel of human cancer cell lines; now we aim to provide new insights into the molecular events leading to cell death by HMA.
Methods: Colon cancer cell lines were treated with HMA and analysed with: morphological and cellular assays for cell viability and death, and autophagy; biochemical approaches to evaluate mitochondrial function and ROS production; in situ detection of DNA damage; molecular tools to silence crucial autophagy/necroptosis factors.
Cancer cells are characterized by a peculiar pH condition, being the extracellular compartment acidic and the intracellular one neutral or basic, i.e. the opposite of what happens in normal cells.
View Article and Find Full Text PDFThe interaction between 13-phenylalkyl and 13-diphenylalkyl berberine derivatives (NAX) and human telomeric DNA G4 structures has been investigated by both spectroscopic and crystallographic methods. NAX042 and NAX053 are the best compounds improving the performance of the natural precursor berberine. This finding is in agreement with the X-ray diffraction result for the NAX053-Tel12 adduct, showing the ligand which interacts via π-stacking, sandwiched at the interface of two symmetry-related quadruplex units, with its benzhydryl group contributing to the overall stability of the adduct by means of additional π-stacking interactions with the DNA residues.
View Article and Find Full Text PDFThe cell cycle inhibitor p21CDKN1A was previously found to interact directly with DNA nick-sensor poly(ADP-ribose) polymerase-1 (PARP-1) and to promote base excision repair (BER). However, the molecular mechanism responsible for this BER-related association of p21 with PARP-1 remains to be clarified. In this study we investigate the capability of p21 to influence PARP-1 binding to DNA repair intermediates in a reconstituted BER system in vitro.
View Article and Find Full Text PDFIn this work, silicon micromachined structures (SMS), consisting of arrays of 3- μ m-thick silicon walls separated by 50- μm-deep, 5- μ m-wide gaps, were applied to investigate the behavior of eight tumor cell lines, with different origins and biological aggressiveness, in a three-dimensional (3D) microenvironment. Several cell culture experiments were performed on 3D-SMS and cells grown on silicon were stained for fluorescence microscopy analyses. Most of the tumor cell lines recognized in the literature as highly aggressive (OVCAR-5, A375, MDA-MB-231, and RPMI-7951) exhibited a great ability to enter and colonize the narrow deep gaps of the SMS, whereas less aggressive cell lines (OVCAR-3, Capan-1, MCF7, and NCI-H2126) demonstrated less penetration capability and tended to remain on top of the SMS.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
October 2015
The natural alkaloid berberine has been recently described as a promising anticancer drug. In order to improve its efficacy and bioavailability, several derivatives have been designed and synthesized and found to be even more potent than the lead compound. Among the series of berberine derivatives we have produced, five compounds were identified to be able to heavily affect the proliferation of human HCT116 and SW613-B3 colon carcinoma cell lines.
View Article and Find Full Text PDFImpaired mitochondrial structure and function are common features of neurodegenerative disorders, ultimately characterized by the death of neural cells promoted by still unknown signals. Among the possible modulators of neurodegeneration, the activation of poly(ADP-ribosylation), a post-translational modification of proteins, has been considered, being the product of the reaction, poly(ADP-ribose), a signaling molecule for different cell death paradigms. The basic properties of poly(ADP-ribosylation) are here described, focusing on the mitochondrial events; cell death paradigms such as apoptosis, parthanatos, necroptosis and mitophagy are illustrated.
View Article and Find Full Text PDFCell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression.
View Article and Find Full Text PDFGenome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss.
View Article and Find Full Text PDFThe aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e.
View Article and Find Full Text PDFLifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis.
View Article and Find Full Text PDFAn emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis.
View Article and Find Full Text PDFEnvironmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales.
View Article and Find Full Text PDFAs part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.
View Article and Find Full Text PDFCarcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated 'selection and succession' of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of 'driver mutations' enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants.
View Article and Find Full Text PDFOne of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis.
View Article and Find Full Text PDFPotentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment.
View Article and Find Full Text PDFThe purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs.
View Article and Find Full Text PDFAn increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge.
View Article and Find Full Text PDFAlkaloids are used in traditional medicine for the treatment of many diseases. These compounds are synthesized in plants as secondary metabolites and have multiple effects on cellular metabolism. Among plant derivatives with biological properties, the isoquinoline quaternary alkaloid berberine possesses a broad range of therapeutic uses against several diseases.
View Article and Find Full Text PDFThe pharmacological use of the plant alkaloid berberine is based on its antibacterial and anti-inflammatory properties; recently, anticancer activity has been attributed to this compound. To exploit this interesting feature, we synthesized three berberine derivatives, namely, NAX012, NAX014, and NAX018, and we tested their effects on two human colon carcinoma cell lines, that is, HCT116 and SW613-B3, which are characterized by wt and mutated p53, respectively. We observed that cell proliferation is more affected by cell treatment with the derivatives than with the lead compound; moreover, the derivatives proved to induce cell cycle arrest and cell death through apoptosis, thus suggesting that they could be promising anticancer drugs.
View Article and Find Full Text PDFBiochem Pharmacol
November 2014
Poly(ADP-ribosylation) results from the conversion of NAD(+) into ADP-ribose and the following addition of ADP-ribose units to form polymers, further bound to acceptor proteins; once post-translationally ADP-ribosylated, proteins could change their function in basic processes. Poly(ADP-ribosylation) is activated under critical situations represented by DNA damage and cellular stress, and modulated in different paradigms of cell death. The hallmarks of the main death processes, i.
View Article and Find Full Text PDF