Publications by authors named "Scott Yuzwa"

Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.

View Article and Find Full Text PDF

Adult Neural Stem Cells (aNSCs) in the ventricular-subventricular zone (V-SVZ) are largely quiescent. Here, we characterize the mechanism underlying the functional role of a cell-signalling inhibitory protein, LRIG1, in the control of aNSCs proliferation. Using Lrig1 knockout models, we show that Lrig1 ablation results in increased aNSCs proliferation with no change in neuronal progeny and that this hyperproliferation likely does not result solely from activation of the epidermal growth factor receptor (EGFR).

View Article and Find Full Text PDF

Astrocytes that reside in superficial (SL) and deep cortical layers have distinct molecular profiles and morphologies, which may underlie specific functions. Here, we demonstrate that the production of SL and deep layer (DL) astrocyte populations from neural progenitor cells in the mouse is temporally regulated. Lineage tracking following in utero and postnatal electroporation with PiggyBac (PB) EGFP and birth dating with EdU and FlashTag, showed that apical progenitors produce astrocytes during late embryogenesis (E16.

View Article and Find Full Text PDF

Astrocytes, a type of glial cell in the central nervous system (CNS), adopt diverse states in response to injury that are influenced by their location relative to the insult. Here, we describe a platform for spatially resolved, single-cell transcriptomics and proteomics, called tDISCO (tissue-digital microfluidic isolation of single cells for -Omics). We use tDISCO alongside two high-throughput platforms for spatial (Visium) and single-cell transcriptomics (10X Chromium) to examine the heterogeneity of the astrocyte response to a cortical ischemic stroke in male mice.

View Article and Find Full Text PDF

The mammalian adult brain contains two neural stem and precursor (NPC) niches: the subventricular zone [SVZ] lining the lateral ventricles and the subgranular zone [SGZ] in the hippocampus. From these, SVZ NPCs represent the largest NPC pool. While SGZ NPCs typically only produce neurons and astrocytes, SVZ NPCs produce neurons, astrocytes and oligodendrocytes throughout life.

View Article and Find Full Text PDF

Cancer stem cells have an important role in tumour biology. While their identity in haematological malignancies is clearly defined, stem cell identity remains elusive in some solid tumours. Clear cell renal cell carcinoma (ccRCC) represents the most common form of kidney cancer, but the identity or existence of ccRCC stem cells remains unknown.

View Article and Find Full Text PDF

Here, we ask how neural stem cells (NSCs) transition in the developing neocortex from a rapidly to a slowly proliferating state, a process required to maintain lifelong stem cell pools. We identify LRIG1, known to regulate receptor tyrosine kinase signaling in other cell types, as a negative regulator of cortical NSC proliferation. LRIG1 is expressed in murine cortical NSCs as they start to proliferate more slowly during embryogenesis and then peaks postnatally when they transition to give rise to a portion of adult NSCs.

View Article and Find Full Text PDF

Peripheral nerves provide a supportive growth environment for developing and regenerating axons and are essential for maintenance and repair of many non-neural tissues. This capacity has largely been ascribed to paracrine factors secreted by nerve-resident Schwann cells. Here, we used single-cell transcriptional profiling to identify ligands made by different injured rodent nerve cell types and have combined this with cell-surface mass spectrometry to computationally model potential paracrine interactions with peripheral neurons.

View Article and Find Full Text PDF

Here, we investigate the origin and nature of blastema cells that regenerate the adult murine digit tip. We show that Pdgfra-expressing mesenchymal cells in uninjured digits establish the regenerative blastema and are essential for regeneration. Single-cell profiling shows that the mesenchymal blastema cells are distinct from both uninjured digit and embryonic limb or digit Pdgfra-positive cells.

View Article and Find Full Text PDF

Peripheral innervation plays an important role in regulating tissue repair and regeneration. Here we provide evidence that injured peripheral nerves provide a reservoir of mesenchymal precursor cells that can directly contribute to murine digit tip regeneration and skin repair. In particular, using single-cell RNA sequencing and lineage tracing, we identify transcriptionally distinct mesenchymal cell populations within the control and injured adult nerve, including neural crest-derived cells in the endoneurium with characteristics of mesenchymal precursor cells.

View Article and Find Full Text PDF

The mechanisms instructing genesis of neuronal subtypes from mammalian neural precursors are not well understood. To address this issue, we have characterized the transcriptional landscape of radial glial precursors (RPs) in the embryonic murine cortex. We show that individual RPs express mRNA, but not protein, for transcriptional specifiers of both deep and superficial layer cortical neurons.

View Article and Find Full Text PDF

Adult neural stem cells (NSCs) derive from embryonic precursors, but little is known about how or when this occurs. We have addressed this issue using single-cell RNA sequencing at multiple developmental time points to analyze the embryonic murine cortex, one source of adult forebrain NSCs. We computationally identify all major cortical cell types, including the embryonic radial precursors (RPs) that generate adult NSCs.

View Article and Find Full Text PDF

During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture.

View Article and Find Full Text PDF
Article Synopsis
  • Mid-hindbrain malformations can arise from disruptions in gene expression during embryo development, affecting brain structure formation.
  • A specific mutation in the ARHGEF2 gene was found to cause intellectual disabilities and brain malformations in a Kurdish-Turkish family, indicating its critical role in brain development.
  • Research demonstrated that the loss of ARHGEF2 disrupts cell differentiation and migration, leading to distinct brain development issues that were also observed in mouse models.
View Article and Find Full Text PDF

The diverse subtypes of neurons that comprise the mammalian cerebral cortex are produced from a single population of cortical neural precursor cells during the period of embryonic neurogenesis. While this process of neurogenesis is tightly controlled at the transcriptional and translational levels, substantial opportunity exists for extrinsic or niche control of the process of neurogenesis. In our recently published work we made use of a combination of computational and biologic approaches to characterize cell-cell communication between cortical neurons and cortical precursor cells and thereby reveal an unexpectedly complex growth factor communication network that accurately predicted new regulators of cortical neurogenesis.

View Article and Find Full Text PDF

Assembly of the microtubule-associated protein tau (tau) into paired helical filaments that ultimately give rise to neurofibrillary tangles (NFTs) makes up one half of the two hallmark pathologies of Alzheimer's disease (AD). Tau has been shown to be modified with O-linked N-acetylglucosamine residues (O-GlcNAc), which is the modification of serine and threonine residues of nucleocytoplasmic proteins with N-acetyl-D-glucosamine (GlcNAc) moieties. Increasing O-GlcNAc in mouse models of tauopathy has been shown to hinder the progression of symptoms in these mice and impair the aggregation of tau into NFTs.

View Article and Find Full Text PDF

The neural stem cell decision to self-renew or differentiate is tightly regulated by its microenvironment. Here, we have asked about this microenvironment, focusing on growth factors in the embryonic cortex at a time when it is largely comprised of neural precursor cells (NPCs) and newborn neurons. We show that cortical NPCs secrete factors that promote their maintenance, while cortical neurons secrete factors that promote differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • Adult mammals generally lack the ability to regenerate tissues, but the distal digit can regenerate through still poorly understood mechanisms.
  • After removing the distal digit in adult mice, Schwann cell precursors (SCPs) dedifferentiate and release growth factors that aid in digit regeneration.
  • When SCPs are disrupted, regeneration is impaired, but transplanting additional SCPs can restore the process; specific factors like oncostatin M and PDGF-AA from SCPs are crucial in promoting tissue regeneration.
View Article and Find Full Text PDF

Here, we asked whether we could identify pharmacological agents that enhance endogenous stem cell function to promote skin repair, focusing on skin-derived precursors (SKPs), a dermal precursor cell population. Libraries of compounds already used in humans were screened for their ability to enhance the self-renewal of human and rodent SKPs. We identified and validated five such compounds, and showed that two of them, alprostadil and trimebutine maleate, enhanced the repair of full thickness skin wounds in middle-aged mice.

View Article and Find Full Text PDF

O-glycosylation of the nuclear pore complex (NPC) by O-linked N-acetylglucosamine (O-GlcNAc) is conserved within metazoans. Many nucleoporins (Nups) comprising the NPC are constitutively O-GlcNAcylated, but the functional role of this modification remains enigmatic. We show that loss of O-GlcNAc, induced by either inhibition of O-GlcNAc transferase (OGT) or deletion of the gene encoding OGT, leads to decreased cellular levels of a number of natively O-GlcNAcylated Nups.

View Article and Find Full Text PDF

Background: Amyloid plaques and neurofibrillary tangles (NFTs) are the defining pathological hallmarks of Alzheimer's disease (AD). Increasing the quantity of the O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification of nuclear and cytoplasmic proteins slows neurodegeneration and blocks the formation of NFTs in a tauopathy mouse model. It remains unknown, however, if O-GlcNAc can influence the formation of amyloid plaques in the presence of tau pathology.

View Article and Find Full Text PDF

Regional glucose hypometabolism is a defining feature of Alzheimer disease (AD). One emerging link between glucose hypometabolism and progression of AD is the nutrient-responsive post-translational O-GlcNAcylation of nucleocytoplasmic proteins. O-GlcNAc is abundant in neurons and occurs on both tau and amyloid precursor protein.

View Article and Find Full Text PDF

Alzheimer disease (AD) is a growing problem for aging populations worldwide. Despite significant efforts, no therapeutics are available that stop or slow progression of AD, which has driven interest in the basic causes of AD and the search for new therapeutic strategies. Longitudinal studies have clarified that defects in glucose metabolism occur in patients exhibiting Mild Cognitive Impairment (MCI) and glucose hypometabolism is an early pathological change within AD brain.

View Article and Find Full Text PDF

The aggregation of the microtubule-associated protein tau into paired helical filaments to form neurofibrillary tangles constitutes one of the pathological hallmarks of Alzheimer's disease. Tau is post-translationally modified by the addition of N-acetyl-D-glucosamine O-linked to several serine and threonine residues (O-GlcNAc). Previously, increased O-GlcNAcylation of tau has been shown to block the accumulation of tau aggregates within a tauopathy mouse model.

View Article and Find Full Text PDF

The O-GlcNAc modification involves the attachment of single β-O-linked N-acetylglucosamine residues to serine and threonine residues of nucleocytoplasmic proteins. Interestingly, previous biochemical and structural studies have shown that O-GlcNAcase (OGA), the enzyme that removes O-GlcNAc from proteins, has an active site pocket that tolerates various N-acyl groups in addition to the N-acetyl group of GlcNAc. The remarkable sequence and structural conservation of residues comprising this pocket suggest functional importance.

View Article and Find Full Text PDF