The design and characterization of two, dual adenosine A(2A)/A(1) receptor antagonists in several animal models of Parkinson's disease is described. Compound 1 was previously reported as a potential treatment for Parkinson's disease. Further characterization of 1 revealed that it was metabolized to reactive intermediates that caused the genotoxicity of 1 in the Ames and mouse lymphoma L51784 assays.
View Article and Find Full Text PDFThe in vivo characterization of a dual adenosine A(2A)/A(1) receptor antagonist in several animal models of Parkinson's disease is described. Discovery and scale-up syntheses of compound 1 are described in detail, highlighting optimization steps that increased the overall yield of 1 from 10.0% to 30.
View Article and Find Full Text PDFA novel series of arylindenopyrimidines were identified as A(2A) and A(1) receptor antagonists. The series was optimized for in vitro activity by substituting the 8- and 9-positions with methylene amine substituents. The compounds show excellent activity in mouse models of Parkinson's disease when dosed orally.
View Article and Find Full Text PDFTwo reactive metabolites were identified in vivo for the dual A(2A)/A(1) receptor antagonist 1. Two strategies were implemented to successfully mitigate the metabolic liabilities associated with 1. Optimization of the arylindenopyrimidines led to a number of amide, ether, and amino analogs having comparable in vitro and in vivo activity.
View Article and Find Full Text PDF