Meiotic drivers that act during spermatogenesis derive a transmission advantage by disabling sperm that do not carry the driver, often leading to substantially reduced overall sperm number and function. A new study by Bates et al. shows no sperm deficit for a driver in a stalk-eyed fly, in contrast to a related species.
View Article and Find Full Text PDFObligate asexuality has arisen many times in eukaryotes, often related to the disrupted function of the core meiotic machinery. For obligately asexual lineages that evolve from facultatively asexual ancestors, there exists another possibility, namely altered regulation of preexisting asexual reproductive processes to produce obligate asexuality. These different pathways leave different signatures in properties of meiosis and recombination that could provide insights into the origin of asexuality.
View Article and Find Full Text PDFConflict over the degree of maternal investment in an offspring can exist between an offspring's maternally inherited and paternally inherited alleles. Such conflict is not expected under self-fertilization. A new study led by Rifkin and Ostevik suggests that divergence in the degree of conflict between closely related outcrossing and selfing species can lead to aberrant early development of hybrids in morning glories.
View Article and Find Full Text PDFThe creeping vole Microtus oregoni exhibits remarkably transformed sex chromosome biology, with complete chromosome drive/drag, X-Y fusions, sex reversed X complements, biased X inactivation, and X chromosome degradation. Beginning with a selfish X chromosome, I propose a series of adaptations leading to this system, each compensating for deleterious consequences of the preceding adaptation: (1) YY embryonic inviability favored evolution of a selfish feminizing X chromosome; (2) the consequent Y chromosome transmission disadvantage favored X-Y fusion ("X "); (3) Xist-based silencing of Y-derived X genes favored a second X-Y fusion ("X "); (4) X chromosome dosage-related costs in X X males favored the evolution of X loss during spermatogenesis; (5) X chromosomal dosage-related costs in X 0 females favored the evolution of X drive during oogenesis; and (6) degradation of the non-recombining X favored the evolution of biased X chromosome inactivation. I discuss recurrent rodent sex chromosome transformation, and selfish genes as a constructive force in evolution.
View Article and Find Full Text PDFSpliceosomal introns, which interrupt nuclear genes, are ubiquitous features of eukaryotic nuclear genes. Spliceosomal intron evolution is complex, with different lineages ranging from virtually zero to thousands of newly created introns. This punctate phylogenetic distribution could be explained if intron creation is driven by specialized transposable elements ("Introners"), with Introner-containing lineages undergoing frequent intron gain.
View Article and Find Full Text PDFWhy it is that some individuals in some species assume lifelong subordinate nonreproductive status has been debated since Darwin. Subordinates may be physically incapable of assuming dominant roles or may not do so in response to specific social contexts. By manipulating social context in the primitively eusocial bee Euglossa dilemma, Saleh and coauthors show that subordinate individuals are capable of adopting many traits of dominant individuals.
View Article and Find Full Text PDFThe availability of genome sequences from large numbers of species offers the prospect of studying genotype-phenotype correlations across various phylogenetic scales using only available data. A new study illustrates the power of this approach, showing an association across primates between morphological sexual dimorphism and the prevalence of a class of DNA elements that stimulate gene expression in response to male androgens.
View Article and Find Full Text PDFMultiple ant lineages have evolved a bizarre system called social hybridogenesis, involving multiple co-occurring genetic lineages, in which mating between lineages produces workers but mating within a lineage produces daughter queens. A new study reveals that this system evolved multiple times within harvester ants, each time from interspecific hybridization. A third finding, that the system likely evolves in small or isolated populations, could be explained either by exploitation of heterospecific males for their sperm, or simply by failure to avoid interspecific mating.
View Article and Find Full Text PDFHaplodiploidy and paternal genome elimination (HD/PGE) are common in invertebrates, having evolved at least two dozen times, all from male heterogamety (i.e., systems with X chromosomes).
View Article and Find Full Text PDFSex determination mechanisms vary widely across animals, but show remarkable degrees of recurrent evolution. Recurrent features of sex determination have largely been attributed to recurrent cooption of shared ancestral regulatory circuits. However, a new study on sex determination in Daphnia magna reveals both recurrent evolution of specific regulatory logic and apparently recurrent recruitment of a regulator, suggesting a role for optimization in recurrent patterns of sex determination mechanisms.
View Article and Find Full Text PDFThe large variation in evolutionary rates across species remains unexplained. A new many-species multivariate study of evolutionary rates in skinks found that environmental temperature explains 45% of rate variation. These results, together with previous studies highlighting different determinants in other organisms, urge a pluralistic understanding of the determinants of evolutionary rate, in contrast to reductive models.
View Article and Find Full Text PDFIn human cells, the U12 spliceosome, also known as the minor spliceosome, is responsible for the splicing of 0.5% of introns, while the major U2 spliceosome is responsible for the other 99.5%.
View Article and Find Full Text PDFIn modern biology, inquiry into proximal mechanistic and ultimate evolutionary causes are often segregated, pursued by different communities of specialists. Yet, the two are often mutually informative. As a case in point, a recent study by Long et al.
View Article and Find Full Text PDFA new study maps individual Formica ant queens' tendency to produce single-sex offspring to a so-called 'supergene' locus. This supergene neighbors another supergene determining social structure. Consequently, single-queen and multi-queen colonies disproportionately produce daughters and sons, respectively.
View Article and Find Full Text PDFWhile much excitement has attended the discovery and study of circular RNAs, a new study in Cell Reports suggests that most mammalian circRNAs are not only functionless, but in fact costly. Comparison across three species is also consistent with the influential but rarely tested Drift-Barrier Hypothesis of molecular complexity. According to this hypothesis, nonessential genomic elements are slightly deleterious elements that fix by genetic drift and, thus, are generally more abundant in species with small effective population sizes.
View Article and Find Full Text PDFMulticellular eukaryotes exhibit a remarkable diversity of sexual systems; however, trioecy, the coexistence of male, female, and cosexual or hermaphrodite individuals in a single species, is remarkably rare. Takahashi et al. (2021) report the first known instance of trioecy in a haploid organism.
View Article and Find Full Text PDFDespite its importance, the selective and mechanistic forces governing recombination remain obscure. A recent study of facultatively asexual honeybees suggests a clear case of adaptive adjustment of recombination rate. That these bees' atypical genetics were central to the experiment underscores the utility of genetic oddities as model organisms for studying fundamental questions.
View Article and Find Full Text PDFTrends Microbiol
October 2021
A recent paper (Li et al.) reports a novel RNA-based Cas-dependent toxin-antitoxin system with the effect of 'addicting' cells to the cassette. Broadly-defined addiction systems could stabilize diverse genomic features, raising the question of the role of selfish elements and intragenomic conflict in the evolution of biological complexity.
View Article and Find Full Text PDFTrends Genet
January 2022
Haldane's rule, which states that the heterogametic sex (XY or ZW females) fares more poorly in interspecific hybrids, is generally attributed to absence of one of the two species' X/Z chromosomes. However, Haldane's rule is also observed in mouse placentas despite paternal X silencing. This pattern could reflect Y chromosomes having evolved to promote growth due to maternal-paternal conflict.
View Article and Find Full Text PDFTrends Plant Sci
August 2021
New work suggests 'subgenome dominance' in polyploids may only occur in angiosperms. Subgenome dominance could explain angiosperm-specific genome reduction, with potential implications for angiosperms' global dominance. I suggest that evolution of the endosperm could have selected for the evolution of subgenome dominance, due to increased hybrid/polyploid incompatibilities and/or through direct reciprocal suppression of maternally- and paternally-inherited genomes.
View Article and Find Full Text PDFRecent work has illuminated the bizarre sex chromosomal system of the mandarin vole, Lasiopodomys mandarinus. The ancestral sex chromosomes have been replaced by 4 neo-sex chromosomes. These sex chromosomes show non-Mendelian inheritance and epistatic sex determination, as well as unaccounted-for karyotype frequencies.
View Article and Find Full Text PDFThe sex-determining gene SRY has undergone rapid evolution in rodents. Curiously, a new study by Miyawaki et al. reveals that a recently evolved SRY gene sequence antagonizes SRY protein stability, necessitating splicing of a novel intron.
View Article and Find Full Text PDFGenome Biol Evol
March 2017
Spliced leader trans-splicing (SLTS) is a poorly understood mechanism that is found in a diversity of eukaryotic lineages. In SLTS, a short RNA sequence is added near the 5' ends of the transcripts of protein-coding genes by a modified spliceosomal reaction. Available data suggest that SLTS has evolved many times, and might be more likely to evolve in animals.
View Article and Find Full Text PDF