Background: Accurate assessments of patient response to therapy are a critical component of personalized medicine. In glioblastoma (GBM), the most aggressive form of brain cancer, tumor growth dynamics are heterogenous across patients, complicating assessment of treatment response. This study aimed to analyze days gained (DG), a burgeoning model-based dynamic metric, for response assessment in patients with recurrent GBM who received bevacizumab-based therapies.
View Article and Find Full Text PDFThe explosion of medical imaging data along with the advent of big data analytics has launched an exciting era for clinical research. One factor affecting the ability to aggregate large medical image collections for research is the lack of infrastructure for automated data annotation. Among all imaging modalities, annotation of magnetic resonance (MR) images is particularly challenging due to the non-standard labeling of MR image types.
View Article and Find Full Text PDFPurpose: Despite the intra- and intertumoral heterogeneity seen in glioblastoma multiforme (GBM), there is little definitive data on the underlying cause of the differences in patient survivals. Serial imaging assessment of tumor growth allows quantification of tumor growth kinetics (TGK) measured in terms of changes in the velocity of radial expansion seen on imaging. Because a systematic study of this entire TGK phenotype-growth before treatment and during each treatment to recurrence -has never been coordinately studied in GBMs, we sought to identify whether patients cluster into discrete groups on the basis of their TGK.
View Article and Find Full Text PDFWe discuss the use of terahertz time domain spectroscopy for studies of conformational flexibility and conformational change in biomolecules. Protein structural dynamics are vital to biological function with protein flexibility affecting enzymatic reaction rates and sensory transduction cycling times. Conformational mode dynamics occur on the picosecond timescale and with the collective vibrational modes associated with these large scale structural motions in the 1-100 cm(-1) range.
View Article and Find Full Text PDF