Publications by authors named "Scott W Hamilton"

This study measured sweat rates (m(sw)) during high-altitude summer treks on Mt. Kilimanjaro to evaluate the efficacy of a recently developed fuzzy piecewise sweat prediction equation (Pw,sol) for application to high-altitude conditions. We hypothesized that the Pw,sol equation, adjusted for the barometric pressure (Pb) decreasing steadily at high altitude (Pw,sol+Alt), would allow for a more accurate prediction of m(sw) than Pw,sol unadjusted for altitude (Pw,sol(SL)).

View Article and Find Full Text PDF

The present study investigated the effects of a feed additive and rumen microbial modifier, monensin sodium (monensin), on selected variables in lactating dairy cows. Monensin fed cows (MON, 600 mg d(-1)) were compared with untreated control cows (CON, 0 mg d(-1)) with respect to the effects of monensin on the production of three greenhouse gases (GHG), methane (CH(4)), nitrous oxide (N(2)O), and carbon dioxide (CO(2)), along with animal performance (dry matter intake; DMI), milk production, milk components, plasma urea nitrogen (PUN), milk urea nitrogen (MUN), and the microbial population structure of fresh feces. Measurements of GHG were collected at Days 14 and 60 in an environmental chamber simulating commercial dairy freestall housing conditions.

View Article and Find Full Text PDF

To determine the effect of monensin, a carboxylic polyether ionophore antibiotic, on the bacterial population structure of dairy cattle colonic contents, we fed six lactating Holstein cows a diet containing monensin (600 mg day(-1)) or an identical diet without monensin. Fresh waste samples were taken directly from the animals once a month for 3 months and assayed for their bacterial population structure via 16S rRNA gene sequence analysis. In total 6,912 16S rRNA genes were examined, comprising 345 and 315 operational taxonomic units (OTUs) from the monensin fed and control animals, respectively.

View Article and Find Full Text PDF