The productivity and survival of managed honey bee colonies is negatively impacted by a diverse array of interacting factors, including exposure to agrochemicals, such as pesticides. This study investigated the use of volatile heterocyclic amine (HCA) compounds as potential short-term repellents that could be employed as feeding deterrents to reduce the exposure of bees to pesticide-treated plants. Parent and substituted HCAs were screened for efficacy relative to the repellent ,-diethyl-meta-toluamide (DEET) in laboratory and field experiments.
View Article and Find Full Text PDFMultiple interacting stressors negatively affect the survival and productivity of managed honey bee colonies. Pesticides remain a primary concern for beekeepers, as even sublethal exposures can reduce bee immunocompetence, impair navigation, and reduce social communication. Pollinator protection focuses on pesticide application guidelines; however, a more active protection strategy is needed.
View Article and Find Full Text PDFResistance mechanisms to synthetic insecticides often include point mutations and increased expression of genes encoding detoxification enzymes. Since pyrethroids are the main adulticides used against Aedes aegypti, which vectors pathogens such as Zika virus, understanding resistance to this insecticide class is of significant relevance. We focused on adenosine triphosphate (ATP)-binding cassette (ABC) transporters in the pyrethroid-resistant Puerto Rico (PR) strain of Ae.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2019
The incidence of mosquito-borne disease poses a significant threat to human and animal health throughout the world, with effective chemical control interventions limited by widespread insecticide resistance. Recent evidence suggests that gut bacteria of mosquitoes, known to be essential in nutritional homeostasis and pathogen defense, may also play a significant role in facilitating insecticide resistance. This study investigated the extent to which bacteria contribute to the general esterase and cytochrome P450 monooxygenase (P450)-mediated detoxification of the insecticides propoxur and naled, as well as the insecticidal activity of these chemistries to the yellow fever mosquito, Aedes aegypti.
View Article and Find Full Text PDFThe use of synthetic insecticides to limit the spread of mosquito-borne disease faces a number of significant challenges, including insecticide resistance, concerns related to the environmental impact of widespread insecticide use, as well as slowed development of new insecticide chemistries. One important alternative to broadcast insecticides is the use of personal protection strategies to limit contact with vector species, including the use of spatial repellents that can employ synthetic pyrethroids or botanical products to effect control. A currently underexplored area of research involves the investigation of botanical products for their potential to serve as insecticide synergists when delivered as a vapor.
View Article and Find Full Text PDFChlorothalonil is a broad spectrum chloronitrile fungicide that has been identified as one of the most common pesticide contaminants found in managed honey bees (Hymenoptera: Apidae: Apis mellifera L.), their food stores, and the hive environment. While not acutely toxic to honey bees, several studies have identified potential sublethal effects, especially in larvae, but comprehensive information regarding the impact of chlorothalonil on adults is lacking.
View Article and Find Full Text PDFAedes aegypti is a vector of viruses that negatively impact human health. Insecticide resistance complicates mosquito control efforts, but understanding the mechanisms of resistance can help to improve management practices. This study examined different factors that could influence the interpretation of toxicity bioassays and gene expression studies in A.
View Article and Find Full Text PDFThe honey bee is a widely managed crop pollinator that provides the agricultural industry with the sustainability and economic viability needed to satisfy the food and fiber needs of our society. Excessive exposure to apicultural pesticides is one of many factors that has been implicated in the reduced number of managed bee colonies available for crop pollination services. The goal of this study was to assess the impact of exposure to commonly used, beekeeper-applied apicultural acaricides on established biochemical indicators of bee nutrition and immunity, as well as morphological indicators of growth and development.
View Article and Find Full Text PDFCurr Opin Insect Sci
April 2018
There exist a variety of factors that negatively impact the health and survival of managed honey bee colonies, including the spread of parasites and pathogens, loss of habitat, reduced availability or quality of food resources, climate change, poor queen quality, changing cultural and commercial beekeeping practices, as well as exposure to agricultural and apicultural pesticides both in the field and in the hive. These factors are often closely intertwined, and it is unlikely that a single stressor is driving colony losses. There is a growing consensus, however, that increasing prevalence of parasites and pathogens are among the most significant threats to managed bee colonies.
View Article and Find Full Text PDFHoney bees are economically important pollinators of a wide variety of crops that have attracted the attention of both researchers and the public alike due to unusual declines in the numbers of managed colonies in some parts of the world. Viral infections are thought to be a significant factor contributing to these declines, but viruses have proven a challenging pathogen to study in a bee model and interactions between viruses and the bee antiviral immune response remain poorly understood. In the work described here, we have demonstrated the use of flock house virus (FHV) as a model system for virus infection in bees and revealed an important role for the regulation of the bee antiviral immune response by ATP-sensitive inwardly rectifying potassium (K) channels.
View Article and Find Full Text PDFThe health and survival of managed honey bee (Apis mellifera) colonies are affected by multiple factors, one of the most important being the interaction between viral pathogens and infestations of the ectoparasitic mite Varroa destructor. Currently, the only effective strategy available for mitigating the impact of viral infections is the chemical control of mite populations. Unfortunately, the use of in-hive acaricides comes at a price, as they can produce sublethal effects that are difficult to quantify, but may ultimately be as damaging as the mites they are used to treat.
View Article and Find Full Text PDFATP-sensitive inwardly rectifying potassium (K) channels couple cellular metabolism to the membrane potential of the cell and play an important role in a variety of tissue types, including the insect dorsal vessel, making them a subject of interest not only for understanding invertebrate physiology, but also as a potential target for novel insecticides. Most of what is known about these ion channels is the result of work performed in mammalian systems, with insect studies being limited to only a few species and physiological systems. The goal of this study was to investigate the role that K channels play in regulating cardiac function in a model social insect, the honey bee (Apis mellifera), by examining the effects that modulators of these ion channels have on heart rate.
View Article and Find Full Text PDFThe European honey bee, Apis mellifera L., is a valuable agricultural and commercial resource noted for producing honey and providing crop pollination services, as well as an important model social insect used to study memory and learning, aging, and more. Here we describe a detailed protocol for the dissection of the dorsal abdominal wall of a bee in order to visualize its dorsal vessel, which serves the role of the heart in the insect.
View Article and Find Full Text PDFThe natural maintenance cycles of many mosquito-borne viruses require establishment of persistent non-lethal infections in the invertebrate host. While the mechanisms by which this occurs are not well understood, antiviral responses directed by small RNAs are important in modulating the pathogenesis of viral infections in disease vector mosquitoes. In yet another example of an evolutionary arms race between host and pathogen, some plant and insect viruses have evolved to encode suppressors of RNA silencing (VSRs).
View Article and Find Full Text PDFThe design and characterization of α-ketoheterocycle fatty acid amide hydrolase (FAAH) inhibitors are disclosed that additionally and irreversibly target a cysteine (Cys269) found in the enzyme cytosolic port while maintaining the reversible covalent Ser241 attachment responsible for their rapid and initially reversible enzyme inhibition. Two α-ketooxazoles (3 and 4) containing strategically placed electrophiles at the C5 position of the pyridyl substituent of 2 (OL-135) were prepared and examined as inhibitors of FAAH. Consistent with the observed time-dependent noncompetitive inhibition, the cocrystal X-ray structure of 3 bound to a humanized variant of rat FAAH revealed that 3 was not only covalently bound to the active site catalytic nucleophile Ser241 as a deprotonated hemiketal, but also to Cys269 through the pyridyl C5-substituent, thus providing an inhibitor with dual covalent attachment in the enzyme active site.
View Article and Find Full Text PDFNonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used analgesics, but can cause gastric and esophageal hemorrhages, erosion, and ulceration. The endogenous cannabinoid (endocannabinoid; eCB) system possesses several potential targets to reduce gastric inflammatory states, including cannabinoid receptor type 1 (CB(1)), cannabinoid receptor type 2 (CB(2)), and enzymes that regulate the eCB ligands 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (anandamide; AEA). In the presented study, we tested whether 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184), a selective inhibitor of the primary catabolic enzyme of 2-AG, monoacylglycerol lipase (MAGL), would protect against NSAID-induced gastric damage.
View Article and Find Full Text PDFPsychopharmacology (Berl)
August 2011
Rationale: Cannabinoids have recently been identified as potential neuronal modulators of pruritic response, representing a potential target in the treatment of itch associated with a variety of pathophysiologic conditions. While the selective CB(1) receptor antagonist rimonabant is an established pruritic agent in both animal and clinical testing, its receptor mechanism of action and anatomical loci remain unclear.
Objective: The purpose of this study was to determine whether CB(1) receptor blockade is critical to rimonabant-induced scratching and to identify differences in scratching response based on different routes of administration.
Cannabinoids have long been shown to have a range of potential therapeutic effects, including antiemetic actions, analgesia, and anxiolysis. However, psychomimetic and memory disruptive side effects, as well as the potential for abuse and dependence, have restricted their clinical development. Endogenous cannabinoids (i.
View Article and Find Full Text PDF