Publications by authors named "Scott Retterer"

Through their expansive mycelium network, soil fungi alter the physical arrangement and chemical composition of their local environment. This can significantly impact bacterial distribution and nutrient transport and can play a dramatic role in shaping the rhizosphere around a developing plant. However, direct observation and quantitation of such behaviors is extremely difficult due to the opacity and complex porosity of the soil microenvironment.

View Article and Find Full Text PDF

In this work, we explore focused electron beam induced etching (FEBIE) of niobium thin films with the XeF precursor as a route to edit, on-the-fly, superconducting devices. We report the effect of XeF pressure, electron beam current, beam energy, and dwell time on the Nb etch rate. To understand the mass transport and reaction rate limiting mechanisms, we compare the relative electron and XeF gas flux and reveal the process is reaction rate limited at low current/short dwell times, but shifts to mass transport limited regimes as both are increased.

View Article and Find Full Text PDF

We demonstrate direct-write patterning of single and multilayer MoS via a focused electron beam-induced etching (FEBIE) process mediated with the XeF precursor. MoS etching is performed at various currents, areal doses, on different substrates, and characterized using scanning electron and atomic force microscopies as well as Raman and photoluminescence spectroscopies. Scanning transmission electron microscopy reveals a sub-40 nm etching resolution and the progression of point defects and lateral etching of the consequent unsaturated bonds.

View Article and Find Full Text PDF

The rhizosphere is the narrow region of soil surrounding the roots of plants that is influenced by root exudates, root secretions, and associated microbial communities. This region is crucial to plant growth and development and plays a critical role in nutrient uptake, disease resistance, and soil transformation. Understanding the function of exogenous compounds in the rhizosphere starts with determining the spatiotemporal distribution of these molecular components.

View Article and Find Full Text PDF

The delivery of biomolecules and impermeable dyes to intact plants is a major challenge. Nanomaterials are up-and-coming tools for the delivery of DNA to plants. As exciting as these new tools are, they have yet to be widely applied.

View Article and Find Full Text PDF

Biofilms are aggregated bacterial communities structured within an extracellular matrix (ECM). ECM controls biofilm architecture and confers mechanical resistance against shear forces. From a physical perspective, biofilms can be described as colloidal gels, where bacterial cells are analogous to colloidal particles distributed in the polymeric ECM.

View Article and Find Full Text PDF

The recent explosion of interest and advances in machine learning technologies has opened the door to new analytical capabilities in microbiology. Using experimental data such as images or videos, machine learning, in particular deep learning with neural networks, can be harnessed to provide insights and predictions for microbial populations. This paper presents such an application in which a Recurrent Neural Network (RNN) was used to perform prediction of microbial growth for a population of two mutants.

View Article and Find Full Text PDF

Transient transformation in plants is a useful process for evaluating gene function. However, there is a scarcity of minimally perturbing methods for gene delivery that can be used on multiple organs, plant species, and non-excised tissues. We pioneered and demonstrated the use of vertically aligned carbon nanofiber (VACNF) arrays to efficiently perform transient transformation of different tissues with DNA constructs in multiple plant species.

View Article and Find Full Text PDF

Conditions affecting biofilm formation differ among bacterial species and this presents a challenge to studying biofilms in the lab. This work leverages functionalized silanes to control surface chemistry in the study of early biofilm propagation, quantified with a semi-automated image processing algorithm. These methods support the study of sp.

View Article and Find Full Text PDF

The plant rhizosphere is a complex and dynamic chemical environment where the exchange of molecular signals between plants, microbes, and fungi drives the development of the entire biological system. Exogenous compounds in the rhizosphere are known to affect plant-microbe organization, interactions between organisms, and ultimately, growth and survivability. The function of exogenous compounds in the rhizosphere is still under much investigation, specifically with respect to their roles in plant growth and development, the assembly of the associated microbial community, and the spatiotemporal distribution of molecular components.

View Article and Find Full Text PDF

The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms ( plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like plants and microorganisms, under reduced-complexity conditions. However, in reducing the complexity of the environment, it is possible to inadvertently alter organism phenotype, which biases laboratory data compared to experiments.

View Article and Find Full Text PDF

Electrical activity in the brain and heart depends on rhythmic generation of action potentials by pacemaker ion channels (HCN) whose activity is regulated by cAMP binding. Previous work has uncovered evidence for both positive and negative cooperativity in cAMP binding, but such bulk measurements suffer from limited parameter resolution. Efforts to eliminate this ambiguity using single-molecule techniques have been hampered by the inability to directly monitor binding of individual ligand molecules to membrane receptors at physiological concentrations.

View Article and Find Full Text PDF

We leverage the high spatial and energy resolution of monochromated aberration-corrected scanning transmission electron microscopy to study the hybridization of cyclic assemblies of plasmonic gold nanorods. Detailed experiments and simulations elucidate the hybridization of the coupled long-axis dipole modes into collective magnetic and electric dipole plasmon resonances. We resolve the magnetic dipole mode in these closed loop oligomers with electron energy loss spectroscopy and confirm the mode assignment with its characteristic spectrum image.

View Article and Find Full Text PDF

State-of-the-Art models of Root System Architecture (RSA) do not allow simulating root growth around rigid obstacles. Yet, the presence of obstacles can be highly disruptive to the root system. We grew wheat seedlings in sealed petri dishes without obstacle and in custom 3D-printed rhizoboxes containing obstacles.

View Article and Find Full Text PDF

Wide-field coherent anti-Stokes Raman scattering (CARS) microscopy offers an attractive means for the rapid and simultaneous acquisition of vibrationally resolved images across a large field of view. A major challenge in the implementation lies in how to achieve sufficiently strong excitation fields necessary to drive the third-order optical responses over the large focal region. Here, we report a new wide-field CARS microscope enabled by a total internal reflection excitation scheme using a femtosecond Ti:Sapphire oscillator to generate pump and broadband near-infrared Stokes pulses.

View Article and Find Full Text PDF

DNA binding proteins, supercoiling, macromolecular crowders, and transient DNA attachments to the cell membrane have all been implicated in the organization of the bacterial chromosome. However, it is unclear what role these factors play in compacting the bacterial DNA into a distinct organelle-like entity, the nucleoid. By analyzing the effects of osmotic shock and mechanical squeezing on Escherichia coli, we show that macromolecular crowders play a dominant role in the compaction of the DNA into the nucleoid.

View Article and Find Full Text PDF

We identified two poplar ( sp.)-associated microbes, the fungus, strain AG77, and the bacterium, strain BT03, that mutually promote each other's growth. Using culture assays in concert with a novel microfluidic device to generate time-lapse videos, we found growth specific media differing in pH and pre-conditioned by microbial growth led to increased fungal and bacterial growth rates.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Spatial and temporal profiling of metabolites within and between living systems is vital to understanding how chemical signaling shapes the composition and function of these complex systems. Measurement of metabolites is challenging because they are often not amenable to extrinsic tags, are diverse in nature, and are present with a broad range of concentrations. Moreover, direct imaging by chemically informative tools can significantly compromise viability of the system of interest or lack adequate resolution.

View Article and Find Full Text PDF

Bacteria occupy heterogeneous environments, attaching and growing within pores in materials, living hosts, and matrices like soil. Systems that permit high-resolution visualization of dynamic bacterial processes within the physical confines of a realistic and tractable porous media environment are rare. Here we use microfluidics to replicate the grain shape and packing density of natural sands in a 2D platform to study the flow-induced spatial evolution of bacterial biofilms underground.

View Article and Find Full Text PDF

Background: Microfluidic systems are well-suited for studying mixed biological communities for improving industrial processes of fermentation, biofuel production, and pharmaceutical production. The results of which have the potential to resolve the underlying mechanisms of growth and transport in these complex branched living systems. Microfluidics provide controlled environments and improved optical access for real-time and high-resolution imaging studies that allow high-content and quantitative analyses.

View Article and Find Full Text PDF

Lectin-functional interfaces are useful for isolation of bacteria from solution because they are low-cost and allow nondestructive, reversible capture. This study provides a systematic investigation of physical and chemical surface parameters that influence bacteria capture over lectin-functionalized polymer interfaces and then applies these findings to construct surfaces with significantly enhanced bacteria capture. The designer block copolymer poly(glycidyl methacrylate)- block-poly(vinyldimethyl azlactone) was used as a lectin attachment layer, and lectin coupling into the polymer film through azlactone-lectin coupling reactions was first characterized.

View Article and Find Full Text PDF

Soils contain a tangle of minerals, water, nutrients, gases, plant roots, decaying organic matter, and microorganisms which work together to cycle nutrients and support terrestrial plant growth. Most soil microorganisms live in periodically interconnected communities closely associated with soil aggregates, i.e.

View Article and Find Full Text PDF