Publications by authors named "Scott Renneckar"

Hydrogels have considerably emerged in a variety of fields, but their weak mechanical properties severely restrict the wide range of implementation. Herein, we propose a multiscale hydrogen bonding toughening strategy using saccharide-based materials to optimize the hydrogel network. The monosaccharide (glucose) at the molecular scale and polysaccharide (cellulose nanofibrils) at the nano/micro scale can effectively form hydrogen bonds across varied scales within the hydrogel network, leading to significantly enhanced mechanical properties.

View Article and Find Full Text PDF

Glucose electrocatalytic-conversion reaction (GCR) is a promising anode reaction to replace the slow oxygen evolution reaction (OER), thus promoting the development of hydrogen production by electrochemical water splitting. Herein, NiFe-based metal-organic framework (MOF) is used as a precursor to prepare W-doped nickel-iron phosphide (W-NiFeP) nanosheet arrays by ion exchange and phosphorylation, which exhibit a high electrocatalytic activity toward the hydrogen evolution reaction (HER), featuring an overpotential of only -179 mV to achieve the current density of 100 mA cm in alkaline media. Notably, electrochemical activation of W-NiFeP facilitates the in situ formation of phosphate groups producing W,P-NiFeOOH, which, in conjunction with the W co-doped amorphous layers, leads to a high electrocatalytic performance toward GCR, due to enhanced proton transfer and adsorption of reaction intermediates, as confirmed in experimental and theoretical studies.

View Article and Find Full Text PDF

Cellulose is the world's most abundant natural polymer and it can be used as a substitute for fossil derived products. The work described here evaluated the use of mono-component enzyme treatment, using endoglucanase (EG) and lytic polysaccharide monooxygenase (LPMO), to improve the properties of micro-fibrillated cellulose (MFC) produced from mechanically refined kraft pulp. Endoglucanase treatment of the pulp significantly reduced the degree of polymerization (DP) of the cellulose by promoting fiber cutting.

View Article and Find Full Text PDF

A major driver of global climate change is the rising concentration of atmospheric CO, the mitigation of which requires the development of efficient and sustainable carbon capture technologies. Solid porous adsorbents have emerged as promising alternatives to liquid amine counterparts due to their potential to reduce regeneration costs. Among them, porous carbons stand out for their high surface area, tailorable pore structure, and exceptional thermal and mechanical properties, making them highly robust and efficient in cycling operations.

View Article and Find Full Text PDF

Renewable feedstocks are sought for clean technology applications, including energy storage applications. In this study, LignoForce™ lignin, a biobased aromatic polymer commercially isolated from wood, was fractioned into two parts using acetone, and the resulting lignin fractions had distinct thermo-rheological behavior. These two fractionated lignins were combined in various ratios and transformed into nanofibers by electrospinning.

View Article and Find Full Text PDF

There has been a resurgence of studies on xylan particles describing various properties and exploring new applications. The aim of this study was to analyze xylan hydrate crystals in the wet state and after air-drying using state-of-art imaging techniques in order to assess the impact of water on both crystallinity and particle morphology. Xylan from esparto grass (Stipa tenacissima) was crystallized and formed convex platelets, termed 'nanotiles'.

View Article and Find Full Text PDF

Valorization of underutilized biobased feedstocks like hetero-polysaccharides is critical for the development of the biorefinery concept. Towards this goal, highly uniform xylan micro/nanoparticles with a particle size ranging from 400 nm to 2.5 μm in diameter were synthesized by a facile self-assembly method in aqueous solutions.

View Article and Find Full Text PDF

Reactive amine compounds are critical for a vast array of useful chemicals in society, yet a limited number of them are derived from renewable resources. This study developed an efficient route to obtain aminated building blocks from phenolic resources derived from nature, such as lignin and tannic acid, for enhancing their utility in applications such as epoxy resins, nylons, polyurethanes, and other polymeric materials. The reaction utilized a carbon storage compound, 2-oxazolidinone as a solvent and as a reagent circumventing the need of hazardous chemistry of conventional amination routes such as those involving formaldehyde.

View Article and Find Full Text PDF

Introducing vinyl groups onto the backbone of technical lignin provides an opportunity to create highly reactive renewable polymers suitable for radical polymerization. In this work, the chemical modification of softwood kraft lignin was pursued with etherification, followed by direct esterification with acrylic acid (AA). In the first step, phenolic hydroxyl and carboxylic acid groups were derivatized into aliphatic hydroxyl groups using ethylene carbonate and an alkaline catalyst.

View Article and Find Full Text PDF

Enzyme-mediated hydrolysis of cellulose always starts with an initial rapid phase, which gradually slows down, sometimes resulting in incomplete cellulose hydrolysis even after prolonged incubation. Although mechanisms such as end-product inhibition are known to play a role, the predominant mechanism appears to be reduced cellulose accessibility to the enzymes. When using Simon's stain to quantify accessibility, the accessibility of mechanically disintegrated and phosphoric acid-swollen cellulose substrates decreased as hydrolysis proceeded.

View Article and Find Full Text PDF

The pre-adsorption of non-catalytic/blocking proteins onto the lignin component of pretreated biomass has been shown to significantly increase the effectiveness of subsequent enzyme-mediated hydrolysis of the cellulose by limiting non-productive enzyme adsorption. Layer-by-layer adsorption of non-catalytic proteins and enzymes onto lignin was monitored using Quartz Crystal Micro balancing combined with Dissipation monitoring (QCM-D) and conventional protein adsorption. These methods were used to assess the interaction between soft/hardwood lignins, cellulases and the three non-catalytic proteins BSA, lysozyme and ovalbumin.

View Article and Find Full Text PDF

Bacterial catabolic pathways have considerable potential as industrial biocatalysts for the valorization of lignin, a major component of plant-derived biomass. Here, we describe a pathway responsible for the catabolism of acetovanillone, a major component of several industrial lignin streams. GD02 was previously isolated for growth on acetovanillone.

View Article and Find Full Text PDF

Characterizing microorganisms and enzymes involved in lignin biodegradation in thermal ecosystems can identify thermostable biocatalysts. We integrated stable isotope probing (SIP), genome-resolved metagenomics, and enzyme characterization to investigate the degradation of high-molecular weight, C-ring-labeled synthetic lignin by microbial communities from moderately thermophilic hot spring sediment (52 °C) and a woody "hog fuel" pile (53 and 62 °C zones). C-Lignin degradation was monitored using IR-GCMS of CO, and isotopic enrichment of DNA was measured with UHLPC-MS/MS.

View Article and Find Full Text PDF

The limited utilization of reliable tools and standards for determination of the softwood kraft lignin molar mass and the corresponding molecular conformation hampers elucidation of the structure-property relationships of lignin. At issue, conventional size exclusion chromatography (SEC) is unable to robustly measure the molar mass because of a lack of calibration standards with a similar structure to lignin. In the present work, the determination of the absolute molar mass of acetylated technical lignin was revisited utilizing SEC combined with multi-angle light scattering with a band pass filter to suppress the fluorescence.

View Article and Find Full Text PDF

The valorization of lignin, a major component of plant-derived biomass, is essential to sustainable biorefining. We identified the major monoaromatic compounds present in black liquor, a lignin-rich stream generated in the kraft pulping process, and investigated their bacterial transformation. Among tested solvents, acetone extracted the greatest amount of monoaromatic compounds from softwood black liquor, with guaiacol, vanillin, and acetovanillone, in an approximately 4:3:2 ratio, constituting ~90% of the total extracted monoaromatic content.

View Article and Find Full Text PDF

Plants inherently display a rich diversity in cell wall chemistry, as they synthesize an array of polysaccharides along with lignin, a polyphenolic that can vary dramatically in subunit composition and interunit linkage complexity. These same cell wall chemical constituents play essential roles in our society, having been isolated by a variety of evolving industrial processes and employed in the production of an array of commodity products to which humans are reliant. However, these polymers are inherently synthesized and intricately packaged into complex structures that facilitate plant survival and adaptation to local biogeoclimatic regions and stresses, not for ease of deconstruction and commercial product development.

View Article and Find Full Text PDF

Hydrogen evolution from biomass photoreforming has been widely recognized as a promising strategy for relieving the pressure from energy crisis and environmental pollution, as it could generate sustainable H and value-added bioproducts simultaneously. Combining p-type semiconductors with n-type semiconductors to form n-p heterojunction is an effective strategy to improve the photocatalytic quantum efficiency by enhancing the separation of photogenerated electrons and holes, which could greatly facilitate the realization of such biomass photorefinery concept. However, the incompact contact between the n-type and p-type semiconductors often induces the aggregation of photogenerated electrons and holes.

View Article and Find Full Text PDF

In this work, a lab-designed apparatus was developed to collect and record the CO amount during the hydroxyethyl modification of lignin. We presented the CO volume amount and the production rate under different reaction conditions (80 - 120 °C and 2 - 6 hrs). Nuclear magnetic resonance spectroscopy was performed to analyze the chemical structure of the hydroxyethyl lignin corresponding with different amounts of CO that evolved during the reaction.

View Article and Find Full Text PDF

Lignin is known to limit the enzyme-mediated hydrolysis of biomass by both restricting substrate swelling and binding to the enzymes. Pretreated mechanical pulp (MP) made from Aspen wood chips was incubated with either 16% sodium sulfite or 32% sodium percarbonate to incorporate similar amounts of sulfonic and carboxylic acid groups onto the lignin (60 mmol/kg substrate) present in the pulp without resulting in significant delignification. When Simon's stain was used to assess potential enzyme accessibility to the cellulose, it was apparent that both post-treatments enhanced accessibility and cellulose hydrolysis.

View Article and Find Full Text PDF

Thermal swamps are unique ecosystems where geothermally warmed waters mix with decomposing woody biomass, hosting novel biogeochemical-cycling and lignin-degrading microbial consortia. Assembly of shotgun metagenome libraries resolved 351 distinct genomes from hot-spring (30-45 °C) and mesophilic (17 °C) sediments. Annotation of 39 refined draft genomes revealed metabolism consistent with oligotrophy, including pathways for degradation of aromatic compounds, such as syringate, vanillate, p-hydroxybenzoate, and phenol.

View Article and Find Full Text PDF

To assess the impact of alkalinity on sulfonation and the enzyme-mediated hydrolysis of softwood cellulose, Lodgepole pine chips were impregnated with 8% sodium sulfite and increasing loadings of sodium carbonate before thermomechanical pulping. It was apparent that alkali addition enhanced lignin sulfonation with an additional 4% loading of sodium carbonate proving optimal. TEM indicated that sulfonation predominantly occurred within the secondary-cell-wall lignin, increasing cellulose accessibility to the cellulase enzymes.

View Article and Find Full Text PDF

Natural materials are highly anisotropic, maximizing performance of the polymeric structures while conserving mass and enhancing function. In synthetic materials, nanoscale fibers produced by electrospinning often contain molecular alignment of polymers along the fiber axis achieving some similarity to natural fibers. In this study, isolated softwood kraft lignin (SKL) was electrospun into aligned fibers utilizing a special collector.

View Article and Find Full Text PDF

An aqueous biopolymer dispersion coating system was synthesized utilizing softwood kraft lignin and a long chain organic acid. The chemical treatment of lignin was a two-step procedure, which first consisted of hydroxyethylation of the phenolic groups on lignin utilizing ethylene carbonate and an alkaline catalyst. This first step resulted in the lignin containing more than 80% aliphatic hydroxyl functionality (H NMR).

View Article and Find Full Text PDF

Functionalized cellulose nanocrystals (CNC) have unique properties that make them attractive in various applications such as drug delivery, hydrogels, and emulsions. However, the predominant chemical methods currently used to functionalize cellulose nanocrystals have a large environmental footprint. Although greener methods are desirable, the relatively inert nature of cellulose crystals presents a major challenge to their potential modification in aqueous media.

View Article and Find Full Text PDF

Lignin is a renewable biopolymer considered as a potential precursor for low-cost carbon materials. Thermal oxidative stabilization (TOS) is an important processing step to maintain fiber geometry during carbonization, yet the impact of  TOS on the properties of lignin-based carbon materials has not been clearly identified in the literature. Yield, change in fiber diameter/distribution, elemental composition, and mechanical properties were explored for both stabilized and carbonized lignin fibers.

View Article and Find Full Text PDF