Recently expanded reports of multidrug-resistant fungal infections underscore the need to develop new and more efficient methods for antifungal drug discovery. A ubiquitous problem in natural product drug discovery campaigns is the rediscovery of known compounds or their relatives; accordingly, we have integrated Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for structural dereplication and Yeast Chemical Genomics for bioprocess evaluation into a screening platform to identify such compounds early in the screening process. We identified 450 fractions inhibiting and the resistant strains of and among more than 40,000 natural product fractions.
View Article and Find Full Text PDFIso-Migrastatin (iso-MGS) and lactimidomycin (LTM) are glutarimide-containing polyketide natural products (NPs) that are biosynthesized by homologous acyltransferase (AT)-less type I polyketide synthase (PKS) assembly lines. The biological activities of iso-MGS and LTM have inspired numerous efforts to generate analogues via genetic manipulation of their biosynthetic machinery in both native producers and model heterologous hosts. A detailed understanding of the MGS and LTM AT-less type I PKSs would serve to inspire future engineering efforts while advancing the fundamental knowledge of AT-less type I PKS enzymology.
View Article and Find Full Text PDFInvestigations of the bacterial family have enabled the development of secondary metabolites critical to human health. Historical investigation of bacterial families for natural product discovery has focused on terrestrial strains, where time-consuming isolation processes often lead to the rediscovery of known compounds. To investigate the secondary metabolite potential of marine-derived , 38 strains were sequenced, assembled and analysed using antiSMASH and BiG-SLiCE.
View Article and Find Full Text PDFCyclic peptides have been excellent source of drug leads. With the advances in discovery platforms, the pharmaceutical industry has a growing interest in cyclic peptides and has pushed several into clinical trials. However, structural complexity of cyclic peptides brings extreme challenges for structure elucidation efforts.
View Article and Find Full Text PDFAlthough microbial genomes harbor an abundance of biosynthetic gene clusters, there remain substantial technological gaps that impair the direct correlation of newly discovered gene clusters and their corresponding secondary metabolite products. As an example of one approach designed to minimize or bridge such gaps, we employed hierarchical clustering analysis and principal component analysis (, whose sole input is MS data) to prioritize 109 marine strains and ultimately identify novel strain WMMB482 as a candidate for in-depth "metabologenomics" analysis following its prioritization. Highlighting the power of current MS-based technologies, not only did enable the discovery of one new, nonribosomal peptide bearing an incredible diversity of unique functional groups, but metabolomics for WMMB482 unveiled 16 additional congeners via the application of Global Natural Product Social molecular networking (GNPS), herein named ecteinamines A-Q (-).
View Article and Find Full Text PDFPseudonochelin (), a siderophore from a marine-derived sp. bacterium, was discovered using genome mining and metabolomics technologies. A 5-aminosalicylic acid (5-ASA) unit, not previously found in siderophore natural products, was identified in .
View Article and Find Full Text PDFChemical investigations of a marine sponge-associated revealed six new imidazolium-containing compounds, bacillimidazoles A-F (-). Previous reports of related imidazolium-containing natural products are rare. Initially unveiled by timsTOF (trapped ion mobility spectrometry) MS data, extensive HRMS and 1D and 2D NMR analyses enabled the structural elucidation of -.
View Article and Find Full Text PDFThe emergence of drug-resistant fungi has prompted an urgent threat alert from the US Centers for Disease Control (CDC). Biofilm assembly by these pathogens further impairs effective therapy. We recently identified an antifungal, turbinmicin, that inhibits the fungal vesicle-mediated trafficking pathway and demonstrates broad-spectrum activity against planktonically growing fungi.
View Article and Find Full Text PDFChemical investigation of a marine sponge-associated sp. led to the discovery of bacillibactins E and F ( and ). Despite containing the well-established cyclic triester core of iron-binding natural products such as enterobactin, bacillibactins E and F ( and ) are the first bacterial siderophores that contain nicotinic and benzoic acid moieties.
View Article and Find Full Text PDFNew antifungal drugs are urgently needed to address the emergence and transcontinental spread of fungal infectious diseases, such as pandrug-resistant Leveraging the microbiomes of marine animals and cutting-edge metabolomics and genomic tools, we identified encouraging lead antifungal molecules with in vivo efficacy. The most promising lead, turbinmicin, displays potent in vitro and mouse-model efficacy toward multiple-drug-resistant fungal pathogens, exhibits a wide safety index, and functions through a fungal-specific mode of action, targeting Sec14 of the vesicular trafficking pathway. The efficacy, safety, and mode of action distinct from other antifungal drugs make turbinmicin a highly promising antifungal drug lead to help address devastating global fungal pathogens such as
View Article and Find Full Text PDFMicrobiol Resour Announc
August 2020
WMMC2535, a representative of the myxobacteria (family ), was isolated from a ragged sea hare in the Florida Keys, and its genome was sequenced using PacBio technology. The WMMC2535 genome sequence is the first of this genus and validates the notion that myxobacteria represent outstanding sources of structurally diverse natural products.
View Article and Find Full Text PDFMicrobial natural product discovery programs face two main challenges today: rapidly prioritizing strains for discovering new molecules and avoiding the rediscovery of already known molecules. Typically, these problems have been tackled using biological assays to identify promising strains and techniques that model variance in a dataset such as PCA to highlight novel chemistry. While these tools have shown successful outcomes in the past, datasets are becoming much larger and require a new approach.
View Article and Find Full Text PDFNDM-1 inhibitors; marine-derived sp.; carbapenem-resistant Enterobacteriaceae; metal chelators.
View Article and Find Full Text PDFForazoline A is a structurally complex PKS-NRPS hybrid produced by marine-derived sp. During the course of studies highlighting the application of IFS analysis as a powerful tool for natural products analysis, we were alerted to an earlier misinterpretation with respect to forazoline A structure elucidation. In particular, IFS reveals that forazoline A contains a thioketone moiety rarely seen in secondary metabolites and, thus, constitutes an even more intriguing structure than originally thought.
View Article and Find Full Text PDFTo date, studies describing myxobacterial secondary metabolites have been relatively scarce in comparison to those addressing actinobacterial secondary metabolites. This realization suggests the immense potential of myxobacteria as an intriguing source of secondary metabolites with unusual structural features and a wide array of biological activities. Marine-derived myxobacteria are especially attractive due to their unique biosynthetic gene clusters, although they are more difficult to handle than terrestrial myxobacteria.
View Article and Find Full Text PDFIntegrating MS-based metabolomics approaches, LC-MS-PCA and molecular networking enabled the targeted isolation of five new pyrrole-derived alkaloids, phallusialides A-E (-), from a marine-derived sp. bacterium. The structures of - were elucidated by analysis of their HRMS, MS/MS, and NMR spectroscopic data.
View Article and Find Full Text PDFHere we report the discovery of two new 3-acetamido-4-hydroxybenzoate esters, bulbiferates A () and B (), isolated from sp. cultivated from the marine tunicate . The structures of and were determined by analysis of 2D NMR and MS data.
View Article and Find Full Text PDFDNA sequencing of a large collection of bacterial genomes reveals a wealth of orphan biosynthetic gene clusters (BGCs) with no identifiable products. BGC silencing, for those orphan clusters that are truly silent, rather than those whose products have simply evaded detection and cluster correlation, is postulated to result from transcriptional inactivation of these clusters under standard laboratory conditions. Here, we employ a multi-omics approach to demonstrate how interspecies interactions modulate the keyicin producing kyc cluster at the transcriptome level in cocultures of kyc-bearing Micromonospora sp.
View Article and Find Full Text PDFScreening of a marine natural products library for inhibitors of TGF-β revealed five pyrimidinedione derivatives, biemamides A-E (1-5). The structures were determined by 2D NMR and HRMS experiments; absolute configurations were established by advanced Marfey's analysis and ECD calculations. Biemamides A-E specifically inhibited in vitro TGF-β induced epithelial to mesenchymal transition in NMuMG cells.
View Article and Find Full Text PDFsp. strain WMMA1996 was isolated in 2013 off the coast of the Florida Keys, United States, from a marine sponge as part of bacterial coculture-based drug discovery initiatives. Analysis of the ∼6.
View Article and Find Full Text PDFsp. strain WMMA184 was isolated from the marine coral as part of ongoing drug discovery efforts. Analysis of the 4.
View Article and Find Full Text PDFAdvances in genomics and metabolomics have made clear in recent years that microbial biosynthetic capacities on Earth far exceed previous expectations. This is attributable, in part, to the realization that most microbial natural product (NP) producers harbor biosynthetic machineries not readily amenable to classical laboratory fermentation conditions. Such "cryptic" or dormant biosynthetic gene clusters (BGCs) encode for a vast assortment of potentially new antibiotics and, as such, have become extremely attractive targets for activation under controlled laboratory conditions.
View Article and Find Full Text PDFA polyether antibiotic, ecteinamycin (1), was isolated from a marine Actinomadura sp., cultivated from the ascidian Ecteinascidia turbinata. C enrichment, high resolution NMR spectroscopy, and molecular modeling enabled elucidation of the structure of 1, which was validated on the basis of comparisons with its recently reported crystal structure.
View Article and Find Full Text PDFCovering: 2010 up to 2017Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer.
View Article and Find Full Text PDFPlatensimycin (PTM) and platencin (PTN) are potent and selective inhibitors of bacterial and mammalian fatty acid synthases and have emerged as promising drug leads for both antibacterial and antidiabetic therapies. We have previously cloned and sequenced the PTM-PTN dual biosynthetic gene cluster from Streptomyces platensis MA7327 and the PTN biosynthetic gene cluster from S. platensis MA7339, the latter of which is composed of 31 genes encoding PTN biosynthesis, regulation, and resistance.
View Article and Find Full Text PDF