The dynamics of zoonotic vector-borne diseases are determined by a complex set of parameters including human behavior that may vary with socio-ecological contexts. Lyme disease is the most common vector-borne disease in the United States. The Northeast and upper Midwest are the regions most affected - two areas with differing levels of urbanization and differing sociocultural settings.
View Article and Find Full Text PDFBackground: Mobile health (mHealth) technology takes advantage of smartphone features to turn them into research tools, with the potential to reach a larger section of the population in a cost-effective manner, compared with traditional epidemiological methods. Although mHealth apps have been widely implemented in chronic diseases and psychology, their potential use in the research of vector-borne diseases has not yet been fully exploited.
Objective: This study aimed to assess the usability and feasibility of The Tick App, the first tick research-focused app in the United States.
Two species of mice, the white-footed mouse, Peromyscus leucopus (Rafinesque; Rodentia: Cricetidae) and the woodland deer mouse, Peromyscus maniculatus (Wagner; Rodentia: Cricetidae), serve as reservoirs of tick-borne pathogens in many parts of North America. However, the role P. maniculatus plays in the amplification and maintenance of Anaplasma phagocytophilum (Rickettsiales: Ehrlichiaceae) and Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) is not well understood.
View Article and Find Full Text PDFAbnormalities of physiological development (teratological forms) in ticks are rare. The occurrence of gigantism, dwarfism, gynandromorphs, missing legs, extra legs, and asymmetries is most often reported from lab-reared specimens, but has been observed in field-collected specimens. All morphologically anomalous ticks (besides gynandromorphy) described to date are from species other than Ixodes scapularis Say (Acari: Ixodidae).
View Article and Find Full Text PDFPhoretic deutonymphs (hypopi) of Schwiebea sp. mites were detected during examinations of questing adult and nymphal blacklegged ticks, Ixodes scapularis Say, from vegetation at two woodland sites in northeastern Wisconsin, USA, during May and June, 2014. Collection sites were in Marinette and Oconto Counties, respectively.
View Article and Find Full Text PDFEcological niche modeling (ENM) algorithms, Maximum Entropy Species Distribution Modeling (Maxent) and Genetic Algorithm for Rule-set Prediction (GARP), were used to develop models in Iowa for three species of mosquito - two significant, extant West Nile virus (WNV) vectors (Culex pipiens L and Culex tarsalis Coquillett (Diptera: Culicidae)), and the nuisance mosquito, Aedes vexans Meigen (Diptera: Culicidae), a potential WNV bridge vector. Occurrence data for the three mosquito species from a state-wide arbovirus surveillance program were used in combination with climatic and landscape layers. Maxent successfully created more appropriate niche models with greater accuracy than GARP.
View Article and Find Full Text PDFBackground: West Nile virus (WNV) is a vector-borne illness that can severely affect human health. After introduction on the East Coast in 1999, the virus quickly spread and became established across the continental United States. However, there have been significant variations in levels of human WNV incidence spatially and temporally.
View Article and Find Full Text PDF