The floating gate, electrolyte-gated transistor (FGT) is a chemical sensing device utilizing a floating gate electrode to physically separate and electronically couple the active sensing area with the transistor. The FGT platform has yielded promising results for the detection of DNA and proteins, but questions remain regarding its fundamental operating mechanism. Using carboxylic acid-terminated self-assembled monolayers (SAMs) exposed to solutions of different pH, we create a charged surface and hence characterize the role that interfacial charge concentration plays relative to capacitance changes.
View Article and Find Full Text PDFWe report a chemically tunable electronic sensor for quantitation of gluten based on a floating-gate transistor (FGT) architecture. The FGTs are fabricated in parallel and each one is functionalized with a different chemical moiety designed to preferentially bind a specific grain source of gluten. The resulting set of FGT sensors can detect both wheat and barley gluten below the gluten-free limit of 20 ppm (w/w) while providing a source-dependent signature for improved accuracy.
View Article and Find Full Text PDFWe report a method to measure DNA hybridization potentiometrically in a manner conducive to portable or hand-held biosensors. An electrolyte-gated transistor (EGT) based on poly(3-hexylthiophene) (P3HT) and an ion-gel serves as a transducer for surface hybridization of DNA. The key aspect of the design is the use of a floating-gate electrode functionalized with ssDNA whose potential is determined by both capacitive coupling with a primary, addressable gate electrode and the presence of adsorbed molecules.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2014
Overcoming signal resolution barriers of neural prostheses, such as the commercially available cochlear impant (CI) or the developing retinal implant, will likely require spatial control of regenerative neural elements. To rationally design materials that direct nerve growth, it is first necessary to determine pathfinding behavior of de novo neurite growth from prosthesis-relevant cells such as spiral ganglion neurons (SGNs) in the inner ear. Accordingly, in this work, repeating 90° turns were fabricated as multidirectional micropatterns to determine SGN neurite turning capability and pathfinding.
View Article and Find Full Text PDFCochlear implants (CIs) provide auditory perception to individuals with severe hearing impairment. However, their ability to encode complex auditory stimuli is limited due, in part, to poor spatial resolution caused by electrical current spread in the inner ear. Directing nerve cell processes towards target electrodes may reduce the problematic current spread and improve stimulatory specificity.
View Article and Find Full Text PDF