Nat Rev Immunol
December 2024
Substantial progress in understanding T cell signalling, particularly with respect to T cell co-receptors such as the co-stimulatory receptor CD28, has been made in recent years. This knowledge has been instrumental in the development of innovative immunotherapies for patients with cancer, including immune checkpoint blockade antibodies, adoptive cell therapies, tumour-targeted immunostimulatory antibodies, and immunostimulatory small-molecule drugs that regulate T cell activation. Following the failed clinical trial of a CD28 superagonist antibody in 2006, targeted CD28 agonism has re-emerged as a technologically viable and clinically promising strategy for cancer immunotherapy.
View Article and Find Full Text PDFPro-survival metabolic adaptations to stress in tumorigenesis remain less well defined. We find that multiple myeloma (MM) is unexpectedly dependent on beta-oxidation of long-chain fatty acids (FAs) for survival under both basal and stress conditions. However, under stress conditions, a second pro-survival signal is required to sustain FA oxidation (FAO).
View Article and Find Full Text PDFCytotoxic CD8+ T lymphocyte (CTL) recognition of non-mutated tumor-associated antigens (TAA), present on cancer cells and also in healthy tissues, is an important element of cancer immunity, but the mechanism of its selectivity for cancer cells and opportunities for its enhancement remain elusive. In this study, we found that CTL expression of the NK receptors (NKR) DNAM1 and NKG2D was associated with the effector status of CD8+ tumor-infiltrating lymphocytes and long-term survival of patients with melanoma. Using MART1 and NY-ESO-1 as model TAAs, we demonstrated that DNAM1 and NKG2D regulate T-cell receptor (TCR) functional avidity and set the threshold for TCR activation of human TAA-specific CTLs.
View Article and Find Full Text PDFBackground: Chimeric antigen receptor (CAR) T-cell therapy and bispecific T-cell engagers, which redirect T-cells to tumor antigens, have immensely benefitted patients with relapsed/refractory B-cell cancers. How these therapies differ in cardiotoxicity is underexplored. We used the World Health Organization pharmacovigilance database, VigiBase, to compare cardiotoxicity profiles between CD19-targeted CAR-T therapy and blinatumomab (a CD19/CD3-targeted bispecific T-cell engager).
View Article and Find Full Text PDFRecent FDA approvals of chimeric antigen receptor (CAR) T cell therapy for multiple myeloma (MM) have reshaped the therapeutic landscape for this incurable cancer. In pivotal clinical trials B cell maturation antigen (BCMA) targeted, 4-1BB co-stimulated (BBζ) CAR T cells dramatically outperformed standard-of-care chemotherapy, yet most patients experienced MM relapse within two years of therapy, underscoring the need to improve CAR T cell efficacy in MM. We set out to determine if inhibition of MM bone marrow microenvironment (BME) survival signaling could increase sensitivity to CAR T cells.
View Article and Find Full Text PDFMetabolic flexibility has emerged as a critical determinant of CD8+ T-cell antitumor activity, yet the mechanisms driving the metabolic flexibility of T cells have not been determined. In this study, we investigated the influence of the nuclear cap-binding complex (CBC) adaptor protein ARS2 on mature T cells. In doing so, we discovered a novel signaling axis that endows activated CD8+ T cells with flexibility of glucose catabolism.
View Article and Find Full Text PDFCD28-driven "signal 2" is critical for naïve CD8 T cell responses to dendritic cell (DC)-presented weak antigens, including non-mutated tumor-associated antigens (TAAs). However, it is unclear how DC-primed cytotoxic T lymphocytes (CTLs) respond to the same TAAs presented by cancer cells which lack CD28 ligands. Here, we show that NK receptors (NKRs) DNAM-1 and NKG2D replace CD28 during CTL re-activation by cancer cells presenting low levels of MHC I/TAA complexes, leading to enhanced proximal TCR signaling, immune synapse formation, CTL polyfunctionality, release of cytolytic granules and antigen-specific cancer cell killing.
View Article and Find Full Text PDFAt the direction of The Guide and Use of Laboratory Animals, rodents in laboratory facilities are housed at ambient temperatures between 20°C and 26°C, which fall below their thermoneutral zone (TNZ). TNZ is identified as a range of ambient temperatures that allow an organism to regulate body temperature without employing additional thermoregulatory processes (e.g.
View Article and Find Full Text PDFGenetically engineered chimeric antigen receptor (CAR) T cells can cure patients with cancers that are refractory to standard therapeutic approaches. To date, adoptive cell therapies have been less effective against solid tumors, largely due to impaired homing and function of immune cells within the immunosuppressive tumor microenvironment (TME). Cellular metabolism plays a key role in T cell function and survival and is amenable to manipulation.
View Article and Find Full Text PDFT cell engineering strategies have emerged as successful immunotherapeutic approaches for the treatment of human cancer. Chimeric Antigen Receptor T (CAR-T) cell therapy represents a prominent synthetic biology approach to re-direct the specificity of a patient's autologous T cells toward a desired tumor antigen. CAR-T therapy is currently FDA approved for the treatment of hematological malignancies, including subsets of B cell lymphoma, acute lymphoblastic leukemia (ALL) and multiple myeloma.
View Article and Find Full Text PDFHumoral immunity is essential for protection against pathogens, emphasized by the prevention of 2-3 million deaths worldwide annually by childhood immunizations. Long-term protective immunity is dependent on the continual production of neutralizing antibodies by the subset of long-lived plasma cells (LLPCs). LLPCs are not intrinsically long-lived, but require interaction with LLPC niche stromal cells for survival.
View Article and Find Full Text PDFDurable humoral immunity against epidemic infectious disease requires the survival of long-lived plasma cells (LLPCs). LLPC longevity is dependent on metabolic programs distinct from short-lived plasma cells (SLPCs); however, the mechanistic basis for this difference is unclear. We have previously shown that CD28, the prototypic T cell costimulatory receptor, is expressed on both LLPCs and SLPCs but is essential only for LLPC survival.
View Article and Find Full Text PDFThe RNA binding protein ARS2 is highly expressed in hematopoietic progenitor populations and is required for adult hematopoiesis. Recent molecular studies found that ARS2 coordinates interactions between nascent RNA polymerase II transcripts and downstream RNA processing machineries, yet how such interactions influence hematopoiesis remains largely unknown. Techniques to differentiate embryonic stem cells (ESC) to hematopoietic progenitor cells (HPC) and mature blood cells have increased molecular understanding of hematopoiesis.
View Article and Find Full Text PDFPrimary and secondary lymphoid organs are heavily innervated by the autonomic nervous system. Norepinephrine, the primary neurotransmitter secreted by post-ganglionic sympathetic neurons, binds to and activates β-adrenergic receptors expressed on the surface of immune cells and regulates the functions of these cells. While it is known that both activated and memory CD8 T-cells primarily express the β2-adrenergic receptor (β2-AR) and that signaling through this receptor can inhibit CD8 T-cell effector function, the mechanism(s) underlying this suppression is not understood.
View Article and Find Full Text PDFRecent biochemical characterization of arsenic resistance protein 2 (Ars2) has established it as central in determining the fate of nascent ribonucleic acid (RNA) polymerase II (RNAPII) transcripts. Through interactions with the nuclear 5'-7-methylguanosine cap-binding complex, Ars2 promotes cotranscriptional processing coupled with nuclear export or degradation of several classes of RNAPII transcripts, allowing for gene expression programs that facilitate rapid and sustained proliferation of immortalized cells in culture. However, rapidly dividing cells in culture do not represent the physiological condition of the vast majority of cells in an adult mammal.
View Article and Find Full Text PDFCell growth and proliferation require the coordinated activation of many cellular processes, including cap-dependent mRNA translation. MicroRNAs oppose cap-dependent translation and set thresholds for expression of target proteins. Emerging data suggest that microRNA function is enhanced by cellular activation due in part to induction of the RNA-induced silencing complex (RISC) scaffold protein GW182.
View Article and Find Full Text PDFMicroRNAs repress mRNA translation by guiding Argonaute proteins to partially complementary binding sites, primarily within the 3' untranslated region (UTR) of target mRNAs. In cell lines, Argonaute-bound microRNAs exist mainly in high molecular weight RNA-induced silencing complexes (HMW-RISC) associated with target mRNA. Here we demonstrate that most adult tissues contain reservoirs of microRNAs in low molecular weight RISC (LMW-RISC) not bound to mRNA, suggesting that these microRNAs are not actively engaged in target repression.
View Article and Find Full Text PDFDuring adipocyte differentiation, significant epigenomic changes occur in association with the implementation of the adipogenic program. We have previously shown that histone acetylation increases during differentiation in a manner dependent on acetyl coenzyme A (acetyl-CoA) production by the enzyme ATP-citrate lyase (ACL). Whether ACL regulates nuclear targets in addition to histones during differentiation is not clear.
View Article and Find Full Text PDFCellular proliferation depends on the integration of mitogenic stimuli with environmental conditions. Increasing evidence suggests that microRNAs play a regulatory role in this integration. Here we show that during periods of cellular quiescence, mature microRNAs are stabilized and stored in Argonaute protein complexes that can be activated by mitogenic stimulation to repress mitogen-stimulated targets, thus influencing subsequent cellular responses.
View Article and Find Full Text PDFThe cellular response to ionizing radiation (IR) involves a variety of mechanisms to repair damage and maintain cell survival. We previously reported that the proteasome activator PA200 promotes long-term cell survival after IR exposure. The molecular function of PA200 is to enhance proteasome-mediated cleavage after glutamate; however, it is not known how this molecular function promotes survival after IR exposure.
View Article and Find Full Text PDFArs2 is a component of the nuclear cap-binding complex that contributes to microRNA biogenesis and is required for cellular proliferation. Here, we expand on the repertoire of Ars2-dependent microRNAs and determine that Ars2 regulates a number of mRNAs, the largest defined subset of which code for histones. Histone mRNAs are unique among mammalian mRNAs because they are not normally polyadenylated but, rather, are cleaved following a 3' stem loop.
View Article and Find Full Text PDFPurpose: The aim of this research was to further investigate the contribution of CD20 antigen expression to rituximab activity and define the mechanisms responsible for CD20 downregulation in rituximab-resistant cell lines (RRCL).
Experimental Design: Rituximab-sensitive cell lines, RRCL, and primary neoplastic B cells were evaluated by chromium-51 release assays, ImageStream image analysis, immunohistochemical staining, flow cytometric analysis, CD20 knockdown, promoter activity, chromatin immunoprecipitation (ChIP) analysis of CD20 promoter, and CD20 plasmid transfection experiments to identify mechanisms associated with CD20 regulation in RRCL.
Results: RRCL exhibited a gradual loss of CD20 surface expression with repeated exposure to rituximab.
Bcl-2 proteins represent a rheostat that controls cellular viability. Obatoclax, a BH3-mimetic, has been designed to specifically target and counteract anti-apoptotic Bcl-2 proteins. We evaluated the biological effects of obatoclax on the anti-tumour activity of rituximab and chemotherapy agents.
View Article and Find Full Text PDFResistance to currently available therapies is a major impediment to the successful treatment of hematological malignancies. Here, we used a model of therapy-resistant B-cell non Hodgkin lymphoma (B-NHL) developed in our laboratory along with primary B-NHL cells to study basic mechanisms of bortezomib activity. In resistant cells and a subset of primary B-NHLs, bortezomib treatment led to stabilization of Bak and subsequent Bak-dependent activation of apoptosis.
View Article and Find Full Text PDFAcquirement of resistance to rituximab has been observed in lymphoma patients. To define mechanisms associated with rituximab resistance, we developed various rituximab-resistant cell lines (RRCL) and studied changes in CD20 expression/structure, lipid raft domain (LRD) reorganization, calcium mobilization, antibody-dependent cellular cytotoxicity, and complement-mediated cytotoxicity (CMC) between parental and RRCL. Significant changes in surface CD20 antigen expression were shown in RRCL.
View Article and Find Full Text PDF