Early transition-metal chalcogenides have garnered recent attention for their optoelectronic properties for solar energy conversion. Herein, the first Zr-/Hf-chalcogenides with a main group cation, BaHfSnSe () and BaZrSnSe(Se) (), have been synthesized. The structure of is formed from isolated SnSe tetrahedra and distorted HfSe octahedra.
View Article and Find Full Text PDFInherently disordered structures of carbon nitrides have hindered an atomic level tunability and understanding of their catalytic reactivity. Starting from a crystalline carbon nitride, poly(triazine imide) or PTI/LiCl, the coordination of copper cations to its intralayer -triazine groups was investigated using molten salt reactions. The reaction of PTI/LiCl within CuCl or eutectic KCl/CuCl molten salt mixtures at 280 to 450 °C could be used to yield three partially disordered and ordered structures, wherein the Cu cations are found to coordinate within the intralayer cavities.
View Article and Find Full Text PDFCarbon nitride materials can be hosts for transition metal sites, but Mössbauer studies on iron complexes in carbon nitrides have always shown a mixture of environments and oxidation states. Here we describe the synthesis and characterization of a crystalline carbon nitride with stoichiometric iron sites that all have the same environment. The material (formula CNHFeLiCl, abbreviated PTI/FeCl) is derived from reacting poly(triazine imide)·LiCl (PTI/LiCl) with a low-melting FeCl/KCl flux, followed by anaerobic rinsing with methanol.
View Article and Find Full Text PDF