Publications by authors named "Scott McEldowney"

A polarization transformation can be fully described by a 4 × 4 matrix, known as the Mueller matrix. To fully image an object's polarization response, one needs to compute the Mueller matrix at each pixel of the image. Standard divison-of-time Mueller matrix imaging, because of its sequential nature, is ill-suited to applications requiring immediate and real-time imaging and is also bulky owing to multiple moving parts.

View Article and Find Full Text PDF

We calibrate and test a division-of-focal-plane red-green-blue (RGB) full-Stokes imaging polarimeter in a variety of indoor and outdoor environments. The polarimeter, acting as a polarization camera, utilizes a low dispersion microretarder array on top of a sensor with Bayer filters and wire-grid linear polarizers. We also present the design and fabrication of the microretarder array and the assembly of the camera and validate the performance of the camera by taking multiple RGB full-Stokes images and videos.

View Article and Find Full Text PDF

An imaging Mueller matrix polarimeter, named the red-green-blue (RGB)950, takes images of medium-sized (tens of centimeters) objects by using a very bright source, large polarization state generator, and high-quality camera. Its broadband extended light source switches between red, green, blue, and near-infrared light to allow taking polarimetric images for comparison with RGB camera images. The large diffuse source makes shadow transitions gradual and spreads out the specular reflected spot into a larger less conspicuous area.

View Article and Find Full Text PDF

We present developments using photo-aligned liquid crystal polymers for creating vortex retarders, halfwave retarders with a continuously variable fast axis. Polarization properties of components designed to create different polarization vortex modes are presented. We assess the viability of these components using the theoretical and experimental point spread functions and optical transfer functions in Mueller matrix format, point spread matrix (PSM) and optical transfer matrix (OTM).

View Article and Find Full Text PDF

We present developments using photoaligned liquid crystal polymers for creating vortex retarders, half-wave retarders with a continuously variable fast axis. Polarization properties of components designed to create different polarization vortex modes are presented. We assess the viability of these components by using the theoretical and experimental point spread functions in Mueller matrix format, or a point spread matrix (PSM).

View Article and Find Full Text PDF

Good performance of optical coatings depends on the appropriate combination of optical and mechanical properties. Therefore, successful applications require good understanding of the relationship between optical microstructural and mechanical characteristics and film stability. In addition, there is a lack of standard mechanical tests that allow one to compare film properties measured in different laboratories.

View Article and Find Full Text PDF