Primary human intestinal stem cells (ISCs) can be cultured and passaged indefinitely as two-dimensional monolayers grown on soft collagen. Culturing ISCs as monolayers enables easy access to the luminal side for chemical treatments and provides a simpler topology for high-resolution imaging compared to cells cultured as three-dimensional organoids. However, the soft collagen required to support primary ISC growth can pose a challenge for live imaging with an inverted microscope, as the collagen creates a steep meniscus when poured into wells.
View Article and Find Full Text PDFBackground & Aims: The obesity epidemic is associated with increased colon cancer progression. As lipid droplets (LDs) fuel tumor growth, we aimed to determine the significance of diacyltransferases (diacylglycerol o-acyltransferases 1 and 2 [DGAT1/2]), responsible for LDs biogenesis, in obesity-mediated colonic tumorigenesis.
Methods: Human colon cancer samples, colon cancer cells, colonospheres, and Apc colon cancer mouse model on a high-fat diet were employed.
Process Analytical Technologies (PAT) used to monitor and control manufacturing processes are crucial for efficient and automated bioprocessing, which is in congruence with lights-off-manufacturing and Industry 4.0 initiatives. As biomanufacturing seeks to realize more high-throughput and automated operation, an increasing need for multimodal analysis of process metrics becomes essential.
View Article and Find Full Text PDFUnlabelled: Intestinal ischemic injury damages the epithelial barrier predisposes patients to life-threatening sepsis unless that barrier is rapidly restored. There is an age-dependency of intestinal recovery in that neonates are the most susceptible to succumb to disease of the intestinal barrier versus older patients. We have developed a pig model that demonstrates age-dependent failure of intestinal barrier restitution in neonatal pigs which can be rescued by the direct application of juvenile pig mucosal tissue, but the mechanisms of rescue remain undefined.
View Article and Find Full Text PDFThe intestinal epithelium dynamically controls cell cycle, yet no experimental platform exists for directly analyzing cell cycle phases in non-immortalized human intestinal epithelial cells (IECs). Here, we present two reporters and a complete platform for analyzing cell cycle phases in live primary human IECs. We interrogate the transcriptional identity of IECs grown on soft collagen, develop two fluorescent cell cycle reporter IEC lines, design and 3D print a collagen press to make chamber slides for optimal imaging while supporting primary human IEC growth, live image cell cycle dynamics, then assemble a computational pipeline building upon free-to-use programs for semi-automated analysis of cell cycle phases.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
March 2024
Ischemic damage to the intestinal epithelial barrier, such as in necrotizing enterocolitis or small intestinal volvulus, is associated with higher mortality rates in younger patients. We have recently reported a powerful pig model to investigate these age-dependent outcomes in which mucosal barrier restitution is strikingly absent in neonates but can be rescued by direct application of homogenized mucosa from older, juvenile pigs by a yet-undefined mechanism. Within the mucosa, a postnatally developing network of enteric glial cells (EGCs) is gaining recognition as a key regulator of the mucosal barrier.
View Article and Find Full Text PDFBackground And Aims: The intestinal epithelium exhibits dynamic control of cell cycle phase lengths, yet no experimental platform exists for directly analyzing cell cycle phases in living human intestinal stem cells (ISCs). Here, we develop primary human ISC lines with two different reporter constructs to provide fluorescent readouts to analyze cell cycle phases in cycling ISCs.
Methods: 3D printing was used to construct a collagen press for making chamber slides that support primary human ISC growth and maintenance within the working distance of a confocal microscope objective.
The gut epithelium has a remarkable ability to recover from damage. We employed a combination of high-throughput sequencing approaches, mouse genetics, and murine and human organoids and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage.
View Article and Find Full Text PDFInfections by Clostridioides difficile, a bacterium that targets the large intestine (colon), impact a large number of people worldwide. Bacterial colonization is mediated by two exotoxins: toxins A and B. Short peptides that can be delivered to the gut and inhibit the biocatalytic activity of these toxins represent a promising therapeutic strategy to prevent and treat C.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
October 2023
Background And Aims: Hypoxia in the intestinal epithelium can be caused by acute ischemic events or chronic inflammation in which immune cell infiltration produces inflammatory hypoxia starving the mucosa of oxygen. The epithelium has the capacity to regenerate after some ischemic and inflammatory conditions suggesting that intestinal stem cells (ISCs) are highly tolerant to acute and chronic hypoxia; however, the impact of hypoxia on human ISC (hISC) function has not been reported. Here we present a new microphysiological system (MPS) to investigate how hypoxia affects hISCs from healthy donors and test the hypothesis that prolonged hypoxia modulates how hISCs respond to inflammation-associated interleukins (ILs).
View Article and Find Full Text PDFThe number of studies investigating the human gastrointestinal tract using various single-cell profiling methods has increased substantially in the past few years. Although this increase provides a unique opportunity for the generation of the first comprehensive Human Gut Cell Atlas (HGCA), there remains a range of major challenges ahead. Above all, the ultimate success will largely depend on a structured and coordinated approach that aligns global efforts undertaken by a large number of research groups.
View Article and Find Full Text PDFBackground & Aims: Hypoxia in the intestinal epithelium can be caused by acute ischemic events or conditions like Inflammatory Bowel Disease (IBD) where immune cell infiltration produces 'inflammatory hypoxia', a chronic condition that starves the mucosa of oxygen. Epithelial regeneration after ischemia and IBD suggests intestinal stem cells (ISCs) are highly tolerant to acute and chronic hypoxia; however, the impact of acute and chronic hypoxia on human ISC (hISC) properties have not been reported. Here we present a new microphysiological system (MPS) to investigate how hypoxia affects hISCs isolated from healthy human tissues.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2023
() toxins A (TcdA) and B (TcdB) cause antibiotic-associated colitis in part by disrupting epithelial barrier function. Accurate in vitro models are necessary to detect early toxicity kinetics, investigate disease etiology, and develop preclinical models for new therapies. Properties of cancer cell lines and organoids inherently limit these efforts.
View Article and Find Full Text PDFUnlabelled: ( .) is a bacterium that causes severe diarrhea and inflammation of the colon. The pathogenicity of .
View Article and Find Full Text PDFBackground & Aims: Dysplasia carries a high risk of cancer development; however, the cellular mechanisms for dysplasia evolution to cancer are obscure. We have previously identified 2 putative dysplastic stem cell (DSC) populations, CD44v6/CD133/CD166 (double positive [DP]) and CD44v6/CD133/CD166 (triple positive [TP]), which may contribute to cellular heterogeneity of gastric dysplasia. Here, we investigated functional roles and cell plasticity of noncancerous Trop2/CD133/CD166 DSCs initially developed in the transition from precancerous metaplasia to dysplasia in the stomach.
View Article and Find Full Text PDFTwo-dimensional (2D) cultures of intestinal and colonic epithelium can be generated using human intestinal stem cells (hISCs) derived from primary tissue sources. These 2D cultures are emerging as attractive and versatile alternatives to three-dimensional organoid cultures; however, transgenesis and gene-editing approaches have not been developed for hISCs grown as 2D monolayers. Using 2D cultured hISCs we show that electroporation achieves up to 80% transfection in hISCs from six anatomical regions with around 64% survival and produces 0.
View Article and Find Full Text PDFBackground & Aims: Fatty acid oxidation by absorptive enterocytes has been linked to the pathophysiology of type 2 diabetes, obesity, and dyslipidemia. Caco-2 and organoids have been used to study dietary lipid-handling processes including fatty acid oxidation, but are limited in physiological relevance or preclude simultaneous apical and basal access. Here, we developed a high-throughput planar human absorptive enterocyte monolayer system for investigating lipid handling, and then evaluated the role of fatty acid oxidation in fatty acid export, using etomoxir, C75, and the antidiabetic drug metformin.
View Article and Find Full Text PDFZoonotic transmission of coronaviruses poses an ongoing threat to human populations. Endemic outbreaks of swine acute diarrhea syndrome coronavirus (SADS-CoV) have caused severe economic losses in the pig industry and have the potential to cause human outbreaks. Currently, there are no vaccines or specific antivirals against SADS-CoV, and our limited understanding of SADS-CoV host entry factors could hinder prompt responses to a potential human outbreak.
View Article and Find Full Text PDFBackground & Aims: Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies analyzing healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon from 3 human beings.
Methods: A total of 12,590 single epithelial cells from 3 independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets.
infection is mediated by two major exotoxins: toxins A (TcdA) and B (TcdB). Inhibiting the biocatalytic activities of these toxins with targeted peptide-based drugs can reduce the risk of infection. In this work, we used a computational strategy that integrates a peptide binding design (PepBD) algorithm and explicit-solvent atomistic molecular dynamics simulation to determine promising toxin A-targeting peptides that can recognize and bind to the catalytic site of the TcdA glucosyltransferase domain (GTD).
View Article and Find Full Text PDFBackground: Prebiotic galacto-oligosaccharides (GOS) have an extensively demonstrated beneficial impact on intestinal health. In this study, we determined the impact of GOS diets on hallmarks of gut aging: microbiome dysbiosis, inflammation, and intestinal barrier defects ("leaky gut"). We also evaluated if short-term GOS feeding influenced how the aging gut responded to antibiotic challenges in a mouse model of Clostridioides difficile infection.
View Article and Find Full Text PDFAMC0717 was isolated from the mucosa of the transverse colon of an 11-year-old organ donor. This strain contains genes putatively encoding short-chain fatty acids (SCFAs), exopolysaccharide (EPS), and several B vitamins.
View Article and Find Full Text PDFAMC0703 was isolated from the intestinal mucosa of an 11-year-old organ donor. Genome analysis revealed the presence of multiple factors potentially aiding in pathogenicity, including fimbriae, flagella, and genes encoding resistance to fluoroquinolones, cephamycin, fosfomycin, and aminocoumarin.
View Article and Find Full Text PDFGut Microbiome (Camb)
November 2020
Knowledge of the intra-individual spatial and regional distribution of intestinal microbial populations is essential to understand gut host-microbial interactions. In this study, we performed a compositional analysis of luminal and mucosal samples from the small and large intestine of four organ donors by 16S rRNA amplicon sequencing and high-throughput quantitative polymerase chain reaction. Since the human microbiota is subject to selection pressure at lower taxonomic levels, we isolated over 400 bacterial strains and investigated strain-level variation of 11 from different intestinal regions.
View Article and Find Full Text PDF