Publications by authors named "Scott M Knudsen"

Rotational dynamics often challenge physical intuition while enabling unique realizations, from the rotor of a gyroscope that maintains its orientation regardless of the outer gimbals, to a tennis racket that rotates around its handle when tossed face-up in the air. In the context of inertial sensing, which can measure mass with atomic precision, rotational dynamics are normally considered a complication hindering measurement interpretation. Here, we exploit the rotational dynamics of a microfluidic device to develop a modality in inertial sensing.

View Article and Find Full Text PDF

Measuring the size of micron-scale particles plays a central role in the biological sciences and in a wide range of industrial processes. A variety of size parameters, such as particle diameter, volume, and mass, can be measured using electrical and optical techniques. Suspended microchannel resonators (SMRs) are microfluidic devices that directly measure particle mass by detecting a shift in resonance frequency as particles flow through a resonating microcantilever beam.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) play a fundamental role in cancer progression. However, in mice, limited blood volume and the rarity of CTCs in the bloodstream preclude longitudinal, in-depth studies of these cells using existing liquid biopsy techniques. Here, we present an optofluidic system that continuously collects fluorescently labeled CTCs from a genetically engineered mouse model (GEMM) for several hours per day over multiple days or weeks.

View Article and Find Full Text PDF

Microbes are an essential component of marine food webs and biogeochemical cycles, and therefore precise estimates of their biomass are of significant value. Here, we measured single-cell biomass distributions of isolates from several numerically abundant marine bacterial groups, including Pelagibacter (SAR11), Prochlorococcus and Vibrio using a microfluidic mass sensor known as a suspended microchannel resonator (SMR). We show that the SMR can provide biomass (dry mass) measurements for cells spanning more than two orders of magnitude and that these estimates are consistent with other independent measures.

View Article and Find Full Text PDF

Methods to rapidly assess cell growth would be useful for many applications, including drug susceptibility testing, but current technologies have limited sensitivity or throughput. Here we present an approach to precisely and rapidly measure growth rates of many individual cells simultaneously. We flow cells in suspension through a microfluidic channel with 10-12 resonant mass sensors distributed along its length, weighing each cell repeatedly over the 4-20 min it spends in the channel.

View Article and Find Full Text PDF

Unlabelled: We use a suspended microchannel resonator to characterize the water and small-molecule permeability of Bacillus subtilis spores based on spores' buoyant mass in different solutions. Consistent with previous results, we found that the spore coat is not a significant barrier to small molecules, and the extent to which small molecules may enter the spore is size dependent. We have developed a method to directly observe the exchange kinetics of intraspore water with deuterium oxide, and we applied this method to wild-type spores and a panel of congenic mutants with deficiencies in the assembly or structure of the coat.

View Article and Find Full Text PDF

We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell's buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell's water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell's dry material alone.

View Article and Find Full Text PDF

We present a general method to quantify coatings on microparticle surfaces based on the additional mass. Particle buoyant mass is determined in a solution with a density that is nearly equivalent to that of the core particle, reducing the magnitude and uncertainty of the measurement. Under these conditions, added material with a different density than that of the core is a larger fraction of the total buoyant mass of the coated particle.

View Article and Find Full Text PDF

We investigate the buoyant mass of bacterial cells in real time with the suspended microchannel resonator (SMR) as the population recovers from an osmotic shock. The density of the culture medium is chosen such that the bacteria initially have a positive buoyant mass which becomes negative as they recover from the hyperosmotic stress. This behavior can be used to differentiate between an antibiotic-resistant and an antibiotic-susceptible strain of the pathogenic bacteria Citrobacter rodentium, and we propose a general approach for exploiting the high precision of the SMR for rapid detection of antibiotic resistance.

View Article and Find Full Text PDF

Improved methods are needed for routine, inexpensive monitoring of biomarkers that could facilitate earlier detection and characterization of cancer. Suspended microchannel resonators (SMRs) are highly sensitive, batch-fabricated microcantilevers with embedded microchannels that can directly quantify adsorbed mass via changes in resonant frequency. As in other label-free detection methods, biomolecular measurements in complex media such as serum are challenging due to high background signals from nonspecific binding.

View Article and Find Full Text PDF

The use of modified nucleotides in an RNA or DNA pool to be used for in vitro selection offers many potential advantages, such as the increased stability of the selected nucleic acid against nuclease degradation. This unit provides useful information and protocols for in vitro selection using modified nucleotides. It includes a discussion of when to use modified nucleotides; protocols for preparing a modified RNA pool and verifying its suitability for in vitro selection; and protocols for selecting and amplifying a functionally enriched pool.

View Article and Find Full Text PDF

Nanomechanical resonators enable the measurement of mass with extraordinary sensitivity. Previously, samples as light as 7 zeptograms (1 zg = 10(-21) g) have been weighed in vacuum, and proton-level resolution seems to be within reach. Resolving small mass changes requires the resonator to be light and to ring at a very pure tone-that is, with a high quality factor.

View Article and Find Full Text PDF

Mass-based detection methods such as the quartz crystal microbalance (QCM) offer an attractive option to label-based methods; however the sensitivity is generally lower by comparison. In particular, low-molecular-weight analytes can be difficult to detect based on mass addition alone. In this communication, we present the use of effector-dependent ribozymes (aptazymes) as reagents for augmenting small ligand detection on a mass-sensitive device.

View Article and Find Full Text PDF

DNAzymes are catalytically active DNA molecules, which have previously been described in solution. Here, we organize these molecules into a series of two-dimensional (2D) arrays using a periodic arrangement of DNA structures based on the DNA double crossover motif. We demonstrate by means of atomic force microscopy that the DNAzymes are organized according to the design and that they retain their activity when attached in linear strings within the context of the 2D array.

View Article and Find Full Text PDF

A number of proteins containing arginine-rich motifs (ARMs) are known to bind RNA and are involved in regulating RNA processing in viruses and cells. Using automated selection methods we have generated a number of aptamers against ARM peptides from various natural proteins. Aptamers bind tightly to their cognate ARMs, with K(d) values in the nanomolar range, and frequently show no propensity to bind to other ARMs or even to single amino acid variants of the cognate ARM.

View Article and Find Full Text PDF

We report label-free protein detection using a microfabricated cantilever-based sensor that is functionalized with DNA aptamers to act as receptor molecules. The sensor utilizes two adjacent cantilevers that constitute a sensor/reference pair and allows direct detection of the differential bending between the two cantilevers. One cantilever is functionalized with aptamers selected for Taq DNA polymerase while the other is blocked with single-stranded DNA.

View Article and Find Full Text PDF

A peptide-dependent ribozyme ligase (aptazyme ligase) has been selected from a random sequence population based on the small L1 ligase. The aptazyme ligase is activated > 18,000-fold by its cognate peptide effector, the HIV-1 Rev arginine-rich motif (ARM), and specifically recognizes the Rev ARM relative to other peptides containing arginine-rich motifs. Moreover, the aptazyme ligase can preferentially recognize the Rev ARM in the context of the full-length HIV-1 Rev protein.

View Article and Find Full Text PDF

Allosteric ribozymes (aptazymes) can transduce the noncovalent recognition of analytes into the catalytic generation of readily observable signals. Aptazymes are easily engineered, can detect diverse classes of biologically relevant molecules, and have high signal-to-noise ratios. These features make aptazymes useful candidates for incorporation into biosensor arrays.

View Article and Find Full Text PDF

Background: Allosteric ribozymes (aptazymes) that have extraordinary activation parameters have been generated in vitro by design and selection. For example, hammerhead and ligase ribozymes that are activated by small organic effectors and protein effectors have been selected from random sequence pools appended to extant ribozymes. Many ribozymes, especially self-splicing introns, are known control gene regulation or viral replication in vivo.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2v673p7dksrgcgtbmhk6np62ctq5d9jc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once