Publications by authors named "Scott M Gianino"

Low-grade gliomas are one of the most common brain tumors in children, where they frequently form within the optic pathway (optic pathway gliomas; OPGs). Since many OPGs occur in the context of the Neurofibromatosis Type 1 (NF1) cancer predisposition syndrome, we have previously employed Nf1 genetically-engineered mouse (GEM) strains to study the pathogenesis of these low-grade glial neoplasms. In the light of the finding that human and mouse low-grade gliomas are composed of Olig2+ cells and that Olig2+ oligodendrocyte precursor cells (OPCs) give rise to murine high-grade gliomas, we sought to determine whether Olig2+ OPCs could be tumor-initiating cells for Nf1 optic glioma.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) is a common neurogenetic condition characterized by significant clinical heterogeneity. A major barrier to developing precision medicine approaches for NF1 is an incomplete understanding of the factors that underlie its inherent variability. To determine the impact of the germline NF1 gene mutation on the optic gliomas frequently encountered in children with NF1, we developed genetically engineered mice harboring two representative NF1-patient-derived Nf1 gene mutations (c.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) is a common neurodevelopmental disorder caused by impaired function of the neurofibromin RAS regulator. Using a combination of Nf1 genetically engineered mice and pharmacological/genetic inhibition approaches, we report that neurofibromin differentially controls neural stem cell (NSC) proliferation and multilineage differentiation through the selective use of the PI3K/AKT and RAF/MEK pathways. While PI3K/AKT governs neurofibromin-regulated NSC proliferation, multilineage differentiation is MEK-dependent.

View Article and Find Full Text PDF

Background: Children with neurofibromatosis type 1 (NF1) develop optic pathway gliomas, which result from impaired NF1 protein regulation of Ras activity. One obstacle to the implementation of biologically targeted therapies is an incomplete understanding of the individual contributions of the downstream Ras effectors (mitogen-activated protein kinase kinase [MEK], Akt) to optic glioma maintenance. This study was designed to address the importance of MEK and Akt signaling to Nf1 optic glioma growth.

View Article and Find Full Text PDF

Background: Children with the neurofibromatosis type 1 (NF1) tumor predisposition syndrome are prone to the development of optic pathway gliomas resulting from biallelic inactivation of the NF1 gene. Recent studies have revealed the presence of other molecular alterations in a small portion of these NF1-associated brain tumors. The purpose of this study was to leverage Nf1 genetically engineered mouse strains to define the functional significance of these changes to optic glioma biology.

View Article and Find Full Text PDF

Objective: Children with neurofibromatosis-1 (NF1) are at risk for developing numerous nervous system abnormalities, including cognitive problems and brain tumors (optic pathway glioma). Currently, there are few prognostic factors that predict clinical manifestations or outcomes in patients, even in families with an identical NF1 gene mutation. In this study, we leveraged Nf1 genetically engineered mice (GEM) to define the potential role of sex as a clinically relevant modifier of NF1-associated neuronal dysfunction.

View Article and Find Full Text PDF

Low-grade brain tumors (pilocytic astrocytomas) that result from a genomic rearrangement in which the BRAF kinase domain is fused to the amino terminal of the KIAA1549 gene (KIAA1549:BRAF fusion; f-BRAF) commonly arise in the cerebellum of young children. To model this temporal and spatial specificity in mice, we generated conditional KIAA1549:BRAF strains that coexpresses green fluorescent protein (GFP). Although both primary astrocytes and neural stem cells (NSCs) from these mice express f-BRAF and GFP as well as exhibit increased MEK activity, only f-BRAF-expressing NSCs exhibit increased proliferation in vitro.

View Article and Find Full Text PDF

Although traditional models of carcinogenesis have largely focused on neoplastic cells, converging data have revealed the importance of non-neoplastic stromal cells in influencing tumor growth and progression. Leveraging a genetically engineered mouse model of neurofibromatosis type 1 (NF1)-associated optic glioma, we now demonstrate that stromal microglia express the CX3CR1 chemokine receptor, such that reduced CX3CR1 expression decreases optic nerve microglia. Moreover, genetic reduction of Cx3cr1 expression in Nf1 optic glioma mice delays optic glioma formation.

View Article and Find Full Text PDF

The concept that gliomas comprise a heterogeneous group of diseases distinguished by their developmental origin raises the intriguing possibility that neural stem cells (NSCs) from different germinal zones have differential capacities to respond to glioma-causing genetic changes. We demonstrate that lateral ventricle subventricular zone NSCs are molecularly and functionally distinct from those of the third ventricle. Consistent with a unique origin for pediatric low-grade glioma, third ventricle, but not lateral ventricle, NSCs hyperproliferate in response to mutations characteristic of childhood glioma.

View Article and Find Full Text PDF

Children with the neurofibromatosis-1 (NF1) cancer predisposition syndrome exhibit numerous clinical problems that reflect defective central nervous system (CNS) neuronal function, including learning disabilities, attention deficit disorder, and seizures. These clinical features result from reduced NF1 protein (neurofibromin) expression in NF1+/- (NF1 heterozygosity) brain neurons. Previous studies have shown that mouse CNS neurons are sensitive to the effects of reduced Nf1 expression and exhibit shorter neurite lengths, smaller growth cone areas, and attenuated survival, reflecting attenuated neurofibromin cAMP regulation.

View Article and Find Full Text PDF

Converging evidence from the analysis of human brain tumors and genetically engineered mice has revealed that the mammalian target of rapamycin (mTOR) pathway is a central regulator of glial and glioma cell growth. In this regard, mutational inactivation of neurofibromatosis-1 (NF1), tuberous sclerosis complex (TSC), and PTEN genes is associated with glioma formation, such that pharmacologic inhibition of mTOR signaling results in attenuated tumor growth. This shared dependence on mTOR suggests that PTEN and NF1 (neurofibromin) glial growth regulation requires TSC/Rheb (Ras homolog enriched in brain) control of mTOR function.

View Article and Find Full Text PDF

The identification of mammalian target of rapamycin (mTOR) as a major mediator of neurofibromatosis-1 (NF1) tumor growth has led to the initiation of clinical trials using rapamycin analogs. Previous studies from our laboratory have shown that durable responses to rapamycin treatment in a genetically engineered mouse model of Nf1 optic glioma require 20 mg/kg/day, whereas only transient tumor growth suppression was observed with 5 mg/kg/day rapamycin despite complete silencing of ribosomal S6 activity. To gain clinically relevant insights into the mechanism underlying this dose-dependent effect, we used Nf1-deficient glial cells in vitro and in vivo.

View Article and Find Full Text PDF

Whereas carcinogenesis requires the acquisition of driver mutations in progenitor cells, tumor growth and progression are heavily influenced by the local microenvironment. Previous studies from our laboratory have used Neurofibromatosis-1 (NF1) genetically engineered mice to characterize the role of stromal cells and signals to optic glioma formation and growth. Previously, we have shown that Nf1+/- microglia in the tumor microenvironment are critical cellular determinants of optic glioma proliferation.

View Article and Find Full Text PDF

Tumorigenesis requires interactions between tumor progenitors and their microenvironment. We found that low cAMP levels were sufficient for tumorigenesis in a mouse model of Neurofibromatosis-1 (NF1)-associated optic pathway glioma (OPG). We hypothesized that the distinct pattern of glioma in NF1 reflected spatiotemporal differences in CXCL12 effects on cAMP levels.

View Article and Find Full Text PDF

Current models of oncogenesis incorporate the contributions of chronic inflammation and aging to the patterns of tumor formation. These oncogenic pathways, involving leukocytes and fibroblasts, are not readily applicable to brain tumors (glioma), and other mechanisms must account for microenvironmental influences on central nervous system tumorigenesis. Previous studies from our laboratories have used neurofibromatosis-1 (NF1) genetically engineered mouse (GEM) models to understand the spatial restriction of glioma formation to the optic pathway of young children.

View Article and Find Full Text PDF

Individuals with the neurofibromatosis type 1 (NF1) inherited cancer syndrome exhibit neuronal dysfunction that predominantly affects the CNS. In this report, we demonstrate a unique vulnerability of CNS neurons, but not peripheral nervous system (PNS) neurons, to reduced Nf1 gene expression. Unlike dorsal root ganglion neurons, Nf1 heterozygous (Nf1+/-) hippocampal and retinal ganglion cell (RGC) neurons have decreased growth cone areas and neurite lengths, and increased apoptosis compared to their wild-type counterparts.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) is a common cancer predisposition syndrome in which affected individuals develop benign and malignant nerve tumors. The NF1 gene product neurofibromin negatively regulates Ras and mammalian target of rapamycin (mTOR) signaling, prompting clinical trials to evaluate the ability of Ras and mTOR pathway inhibitors to arrest NF1-associated tumor growth. To discover other downstream targets of neurofibromin, we performed an unbiased cell-based high-throughput chemical library screen using NF1-deficient malignant peripheral nerve sheath tumor (MPNST) cells.

View Article and Find Full Text PDF

Numerous studies have suggested that astrocytes in the central nervous system (CNS) exhibit molecular and functional heterogeneity. In this regard, astroglia from different CNS locations express distinct immune system, and neurotransmitter proteins, have varying levels of gap junction coupling and respond differently to injury. However, the relevance of these differences to human disease is unclear.

View Article and Find Full Text PDF

Neurofibromatosis-1 (NF1) is a common tumor predisposition syndrome in which affected individuals develop benign and malignant tumors. Previous studies from our laboratory and others have shown that benign tumor formation in Nf1 genetically engineered mice (GEM) requires a permissive tumor microenvironment. In the central nervous system, Nf1 loss in glia is insufficient for glioma formation unless coupled with Nf1 heterozygosity in the brain.

View Article and Find Full Text PDF