Combining real-time electronic structure with the nuclear-electronic orbital (NEO) method has enabled the simulation of complex nonadiabatic chemical processes. However, accurate descriptions of hydrogen tunneling and double excitations require multiconfigurational treatments. Herein, we develop and implement the real-time NEO time-dependent configuration interaction (NEO-TDCI) approach.
View Article and Find Full Text PDFWe theoretically investigate the influence of diradical electron spin coupling on the time-resolved X-ray absorption spectra of the photochemical ring opening of furanone. We predict geometry-dependent carbon K-edge signals involving transitions from core orbitals to both singly and unoccupied molecular orbitals. The most obvious features of the ring opening come from the carbon atom directly involved in the bond breaking through its transition to both the newly formed singly occupied and the available lowest unoccupied molecular orbitals (SOMO and LUMO, respectively).
View Article and Find Full Text PDFWe test the efficacy of excited state mean field theory and its excited-state-specific perturbation theory on the prediction of K-edge positions and x-ray peak separations. We find that the mean field theory is surprisingly accurate, even though it contains no accounting of differential electron correlation effects. In the perturbation theory, we test multiple core-valence separation schemes and find that, with the mean field theory already so accurate, electron-counting biases in one popular separation scheme become a dominant error when predicting K-edges.
View Article and Find Full Text PDFWe present a systematically improvable approach to core excitations in variational Monte Carlo. Building on recent work in excited-state-specific Monte Carlo, we show how a straightforward protocol, starting from a quantum chemistry guess, is able to capture core state's strong orbital relaxations, maintain accuracy in the near-nuclear region during these relaxations, and explicitly balance accuracy between ground and core excited states. In water, ammonia, and methane, which serve as prototypical representatives for oxygen, nitrogen, and carbon core states, respectively, this approach predicts core excitation energies within 0.
View Article and Find Full Text PDF