Traumatic spinal cord injury (SCI) elicits a cascade of secondary injury mechanisms that induce profound changes in glia and neurons resulting in their activation, injury or cell death. The resultant imbalanced microenvironment of acute SCI also negatively impacts regenerative processes in the injured spinal cord. Thus, it is imperative to uncover endogenous mechanisms that drive these acute injury events.
View Article and Find Full Text PDFTraumatic spinal cord injury (SCI) is a life changing neurological condition with substantial socioeconomic implications for patients and their care-givers. Recent advances in medical management of SCI has significantly improved diagnosis, stabilization, survival rate and well-being of SCI patients. However, there has been small progress on treatment options for improving the neurological outcomes of SCI patients.
View Article and Find Full Text PDFSpinal cord injury (SCI) results in glial activation and neuroinflammation, which play pivotal roles in the secondary injury mechanisms with both pro- and antiregeneration effects. Presently, little is known about the endogenous molecular mechanisms that regulate glial functions in the injured spinal cord. We previously reported that the expression of neuregulin-1 (Nrg-1) is acutely and chronically declined following traumatic SCI.
View Article and Find Full Text PDFFront Mol Neurosci
August 2015
Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal.
View Article and Find Full Text PDFChondroitin Sulfate Proteoglycans (CSPGs) are a major component of the extracellular matrix in the central nervous system (CNS) and play critical role in the development and pathophysiology of the brain and spinal cord. Developmentally, CSPGs provide guidance cues for growth cones and contribute to the formation of neuronal boundaries in the developing CNS. Their presence in perineuronal nets plays a crucial role in the maturation of synapses and closure of critical periods by limiting synaptic plasticity.
View Article and Find Full Text PDFMultipotent adult neural precursor cells (NPCs) have tremendous intrinsic potential to repair the damaged spinal cord. However, evidence shows that the regenerative capabilities of endogenous and transplanted NPCs are limited in the microenvironment of spinal cord injury (SCI). We previously demonstrated that injury-induced upregulation of matrix chondroitin sulfate proteoglycans (CSPGs) restricts the survival, migration, integration, and differentiation of NPCs following SCI.
View Article and Find Full Text PDFContusive spinal cord injury leads to a variety of disabilities owing to limited neuronal regeneration and functional plasticity. It is well established that an upregulation of glial-derived chondroitin sulphate proteoglycans (CSPGs) within the glial scar and perineuronal net creates a barrier to axonal regrowth and sprouting. Protein tyrosine phosphatase σ (PTPσ), along with its sister phosphatase leukocyte common antigen-related (LAR) and the nogo receptors 1 and 3 (NgR), have recently been identified as receptors for the inhibitory glycosylated side chains of CSPGs.
View Article and Find Full Text PDF