Publications by authors named "Scott Longwell"

Organoids are powerful experimental models for studying the ontogeny and progression of various diseases including cancer. Organoids are conventionally cultured in bulk using an extracellular matrix mimic. However, bulk-cultured organoids physically overlap, making it impossible to track the growth of individual organoids over time in high throughput.

View Article and Find Full Text PDF
Article Synopsis
  • The integration of light manipulation and liquid control on optofluidics chips has led to significant advancements in various fields, including biology, medicine, and display technologies.
  • This research introduces a novel system where metasurfaces are engineered to respond sensitively to their surrounding liquid environment, allowing for dynamic adjustments in optical properties.
  • The development of an automated meta-optofluidic platform paves the way for innovative applications such as dynamic displays, imaging techniques, and advanced sensing methods.
View Article and Find Full Text PDF

New high-throughput biochemistry techniques complement selection-based approaches and provide quantitative kinetic and thermodynamic data for thousands of protein variants in parallel. With these advances, library generation rather than data collection has become rate-limiting. Unlike pooled selection approaches, high-throughput biochemistry requires mutant libraries in which individual sequences are rationally designed, efficiently recovered, sequence-validated, and separated from one another, but current strategies are unable to produce these libraries at the needed scale and specificity at reasonable cost.

View Article and Find Full Text PDF

Microfluidic devices are an enabling technology for many labs, facilitating a wide range of applications spanning high-throughput encapsulation, molecular separations, and long-term cell culture. In many cases, however, their utility is limited by a 'world-to-chip' barrier that makes it difficult to serially interface samples with these devices. As a result, many researchers are forced to rely on low-throughput, manual approaches for managing device input and output (IO) of samples, reagents, and effluent.

View Article and Find Full Text PDF

Transient, regulated binding of globular protein domains to Short Linear Motifs (SLiMs) in disordered regions of other proteins drives cellular signaling. Mapping the energy landscapes of these interactions is essential for deciphering and perturbing signaling networks but is challenging due to their weak affinities. We present a powerful technology (MRBLE-pep) that simultaneously quantifies protein binding to a library of peptides directly synthesized on beads containing unique spectral codes.

View Article and Find Full Text PDF

Microfluidic technologies have been used across diverse disciplines ( high-throughput biological measurement, fluid physics, laboratory fluid manipulation) but widespread adoption has been limited in part due to the lack of openly disseminated resources that enable non-specialist labs to make and operate their own devices. Here, we report the open-source build of a pneumatic setup capable of operating both single and multilayer (Quake-style) microfluidic devices with programmable scripting automation. This setup can operate both simple and complex devices with 48 device valve control inputs and 18 sample inputs, with modular design for easy expansion, at a fraction of the cost of similar commercial solutions.

View Article and Find Full Text PDF

Transcription factors (TFs) are primary regulators of gene expression in cells, where they bind specific genomic target sites to control transcription. Quantitative measurements of TF-DNA binding energies can improve the accuracy of predictions of TF occupancy and downstream gene expression in vivo and shed light on how transcriptional networks are rewired throughout evolution. Here, we present a sequencing-based TF binding assay and analysis pipeline (BET-seq, for Binding Energy Topography by sequencing) capable of providing quantitative estimates of binding energies for more than one million DNA sequences in parallel at high energetic resolution.

View Article and Find Full Text PDF

Virulence of the gastric pathogen Helicobacter pylori (Hp) is directly linked to the pathogen's ability to glycosylate proteins; for example, Hp flagellin proteins are heavily glycosylated with the unusual nine-carbon sugar pseudaminic acid, and this modification is absolutely essential for Hp to synthesize functional flagella and colonize the host's stomach. Although Hp's glycans are linked to pathogenesis, Hp's glycome remains poorly understood; only the two flagellin glycoproteins have been firmly characterized in Hp. Evidence from our laboratory suggests that Hp synthesizes a large number of as-yet unidentified glycoproteins.

View Article and Find Full Text PDF

Bacterial glycoproteins represent an attractive target for new antibacterial treatments, as they are frequently linked to pathogenesis and contain distinctive glycans that are absent in humans. Despite their potential therapeutic importance, many bacterial glycoproteins remain uncharacterized. This review focuses on recent advances in deciphering the bacterial glycocode, including metabolic glycan labeling to discover and characterize bacterial glycoproteins, lectin-based microarrays to monitor bacterial glycoprotein dynamics, crosslinking sugars to assess the roles of bacterial glycoproteins, and harnessing bacterial glycosylation systems for the efficient production of industrially important glycoproteins.

View Article and Find Full Text PDF