Brahma related gene product 1 (BRG1) is an ATPase that drives the catalytic activity of a subset of the mammalian SWI/SNF chromatin remodeling enzymes. BRG1 is overexpressed in most human breast cancer tumors without evidence of mutation and is required for breast cancer cell proliferation. We demonstrate that knockdown of BRG1 sensitized triple negative breast cancer cells to chemotherapeutic drugs used to treat breast cancer.
View Article and Find Full Text PDFPPARγ2 is a critical lineage-determining transcription factor that is essential for adipogenic differentiation. Here we report characterization of the three-dimensional structure of the PPARγ2 locus after the onset of adipogenic differentiation and the mechanisms by which it forms. We identified a differentiation-dependent loop between the PPARγ2 promoter and an enhancer sequence 10 kb upstream that forms at the onset of PPARγ2 expression.
View Article and Find Full Text PDFDifferentiation signaling results in reprogramming of cellular gene expression that leads to morphological changes and functional specialization of a precursor cell. This global change in gene expression involves temporal regulation of differentiation-specific genes that are located throughout the genome, raising the idea that genome structure may also be re-organized during cell differentiation to facilitate regulated gene expression. Using in vitro adipocyte differentiation as a model, we explored whether gene organization within the nucleus is altered upon exposure of precursor cells to signaling molecules that induce adipogenesis.
View Article and Find Full Text PDFRegulation of adipose tissue formation by adipogenic-regulatory proteins has long been a topic of interest given the ever-increasing health concerns of obesity and type 2 diabetes in the general population. Differentiation of precursor cells into adipocytes involves a complex network of cofactors that facilitate the functions of transcriptional regulators from the CCATT/enhancer binding protein, and the peroxisome proliferator-activated receptor (PPAR) families. Many of these cofactors are enzymes that modulate the structure of chromatin by altering histone-DNA contacts in an ATP-dependent manner or by posttranslationally modifying the histone proteins.
View Article and Find Full Text PDFThe nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that specifies formation of the adipocyte lineage. PPARγ also serves as a primary target for the treatment of type 2 diabetes, illustrating both its medical relevance as well as the need to understand fundamental aspects of PPARγ expression and function. Here, we characterize molecular changes that occur at the PPARγ2 promoter within the first several hours of adipocyte differentiation in culture.
View Article and Find Full Text PDFBackground And Aims: Glomerular diseases are the third leading cause of kidney failure worldwide, behind only diabetes and hypertension. The molecular mechanisms underlying the cause of glomerular diseases are still largely unknown. The identification and characterization of new molecules associated with glomerular function should provide new insights into understanding the diverse group of glomerular diseases.
View Article and Find Full Text PDFThe E3 ubiquitin ligase Cbl-b is a negative regulator of TCR signaling that: 1) sets the activation threshold for T cells; 2) is induced in anergic T cells; and 3) protects against autoimmunity. However, the role of Cbl-b in regulating CD8 T cell activation and functions during physiological T cell responses has not been systematically examined. Using the lymphocytic choriomeningitis virus infection model, we show that Cbl-b deficiency did not significantly affect the clonal expansion of virus-specific CD8 T cells.
View Article and Find Full Text PDFDominant mutations in the early growth response 2 (Egr2/Krox20) transactivator, a critical regulator of peripheral myelin development, have been associated with peripheral myelinopathies. These dominant mutants interfere with the expression of genes required for myelination by Schwann cells, including that for the most abundant peripheral myelin protein, Myelin protein zero (Mpz). In this study, we show that Egr2 mutants specifically affect an Egr2-responsive element within the Mpz first intron that also contains binding sites for the transcription factor Sox10.
View Article and Find Full Text PDFEgr2/Krox20 is a zinc finger transactivator that regulates a diverse array of genes required for peripheral nerve myelination. Although several studies have elucidated the Egr2-regulated gene network, it is not clear if Egr2 regulates its target genes directly or indirectly through induction of other transactivators. Moreover, very few Egr2 binding sites have been identified in regulatory elements of myelin genes.
View Article and Find Full Text PDFDuring myelination of the peripheral nervous system, the myelin protein zero (Mpz) gene is induced to produce the most abundant protein component (P(0)) of mature myelin. Although the basal embryonic expression of Mpz in Schwann cells has been attributed to regulation by Sox10, the molecular mechanism for the profound up-regulation of this gene during myelination has not been established. In this study, we have identified a highly conserved element within the first intron of the Mpz gene, which contains binding sites for the early growth response 2 (Egr2/Krox20) transcription factor, a critical regulator of peripheral nerve myelination.
View Article and Find Full Text PDFMyelination of peripheral nerves by Schwann cells requires a large amount of lipid and cholesterol biosynthesis. To understand the transcriptional coordination of the myelination process, we have investigated the developmental relationship between early growth response 2 (Egr2)/Krox20--a pivotal regulator of peripheral nerve myelination--and the sterol regulatory element binding protein (SREBP) pathway, which controls expression of cholesterol/lipid biosynthetic genes. During myelination of sciatic nerve, there is a very significant induction of SREBP1 and SREBP2, as well as their target genes, suggesting that the SREBP transactivators are important regulators in the myelination process.
View Article and Find Full Text PDFThe imprinted insulin-like growth factor-2 (IGF2) gene is an auto/paracrine growth factor expressed only from the paternal allele in adult tissues. In tissues susceptible to aging-related cancers, including the prostate, a relaxation of IGF2 imprinting is found, suggesting a permissive role for epigenetic alterations in cancer development. To determine whether IGF2 imprinting is altered in cellular aging and senescence, human prostate epithelial and urothelial cells were passaged serially in culture to senescence.
View Article and Find Full Text PDFAtaxia-telangiectasia (A-T) is a syndrome of cancer susceptibility, immune dysfunction, and neurodegeneration that is caused by mutations in the A-T-mutated (ATM) gene. ATM has been implicated as a critical regulator of cellular responses to DNA damage, including the activation of cell cycle checkpoints and induction of apoptosis. Although defective cell cycle-checkpoint regulation and associated genomic instability presumably contribute to cancer susceptibility in A-T, the mechanism of neurodegeneration in A-T is not well understood.
View Article and Find Full Text PDFThe endoplasmic reticulum inside neurons can provide enormous amounts of releasable Ca2+ to increase cytosolic Ca2+ levels through the activation of endoplasmic membrane ion channels. Ryanodine (RyR) channels release Ca2+ into the cytosol when activated by Ca2+ influx through voltage-gated channels, or by cyclicADP ribose. Inositol tris-phosphate (IP3) channels are stimulated by phospolipid metabolism and the release of IP3.
View Article and Find Full Text PDF