Pressure overload-induced cardiac hypertrophy is a maladaptive response with poor outcomes and limited treatment options. The transient receptor potential melastatin 4 (TRPM4) ion channel is key to activation of a Ca/calmodulin-dependent kinase II (CaMKII)-reliant hypertrophic signaling pathway after pressure overload, but TRPM4 is neither stretch-activated nor Ca-permeable. Here we show that Piezo1, which is both stretch-activated and Ca-permeable, is the mechanosensor that transduces increased myocardial forces into the chemical signal that initiates hypertrophic signaling via a close physical interaction with TRPM4.
View Article and Find Full Text PDFPathological left ventricular hypertrophy (LVH) occurs in response to pressure overload and remains the single most important clinical predictor of cardiac mortality. The molecular pathways in the induction of pressure overload LVH are potential targets for therapeutic intervention. Current treatments aim to remove the pressure overload stimulus for LVH, but do not completely reverse adverse cardiac remodelling.
View Article and Find Full Text PDFRationale: Gq-coupled receptors are thought to play a critical role in the induction of left ventricular hypertrophy (LVH) secondary to pressure overload, although mechano-sensitive channel activation by a variety of mechanisms has also been proposed, and the relative importance of calcineurin- and calmodulin kinase II (CaMKII)-dependent hypertrophic pathways remains controversial.
Objective: To determine the mechanisms regulating the induction of LVH in response to mechanical pressure overload.
Methods And Results: Transgenic mice with cardiac-targeted inhibition of Gq-coupled receptors (GqI mice) and their non-transgenic littermates (NTL) were subjected to neurohumoral stimulation (continuous, subcutaneous angiotensin II (AngII) infusion for 14 days) or mechanical pressure overload (transverse aortic arch constriction (TAC) for 21 days) to induce LVH.
The 'fight or flight' response to physiological stress involves sympathetic nervous system activation, catecholamine release and adrenergic receptor stimulation. In the heart, this induces positive inotropy, previously attributed to the β-adrenergic receptor subtype. However, the role of the α-adrenergic receptor, which has been suggested to be protective in cardiac pathology, has not been investigated in the setting of physiological stress.
View Article and Find Full Text PDFAnimal models of pressure overload are valuable for understanding hypertensive heart disease. We characterised a surgical model of pressure overload-induced hypertrophy in C57BL/6J mice produced by suprarenal aortic constriction (SAC). Compared to sham controls, at one week post-SAC systolic blood pressure was significantly elevated and left ventricular (LV) hypertrophy was evident by a 50% increase in the LV weight-to-tibia length ratio due to cardiomyocyte hypertrophy.
View Article and Find Full Text PDFTherapies that target scar formation after myocardial infarction (MI) could prevent ensuing heart failure or death from ventricular arrhythmias. We have previously shown that recombinant human platelet-derived growth factor-AB (rhPDGF-AB) improves cardiac function in a rodent model of MI. To progress clinical translation, we evaluated rhPDGF-AB treatment in a clinically relevant porcine model of myocardial ischemia-reperfusion.
View Article and Find Full Text PDFCongenital heart disease (CHD) is the most common type of birth defect. In recent years, research has focussed on identifying the genetic causes of CHD. However, only a minority of CHD cases can be attributed to single gene mutations.
View Article and Find Full Text PDFWe have previously demonstrated that adult transgenic C57BL/6J mice with CM-restricted overexpression of the dominant negative W mutant protein (dn-c-kit-Tg) respond to pressure overload with robust cardiomyocyte (CM) cell cycle entry. Here, we tested if outcomes after myocardial infarction (MI) due to coronary artery ligation are improved in this transgenic model. Compared to non-transgenic littermates (NTLs), adult male dn-c-kit-Tg mice displayed CM hypertrophy and concentric left ventricular (LV) hypertrophy in the absence of an increase in workload.
View Article and Find Full Text PDFEchocardiography is an invaluable tool for characterizing cardiac structure and function in vivo. Technological advances in high-frequency ultrasound over the past 3 decades have increased spatial and temporal resolution, and facilitated many important clinical and basic science discoveries. Successful reverse translation of established echocardiographic techniques, including M-mode, B-mode, color Doppler, pulsed-wave Doppler, tissue Doppler and, most recently, myocardial deformation imaging, from clinical cardiology into the basic science laboratory has enabled researchers to achieve a deeper understanding of myocardial phenotypes in health and disease.
View Article and Find Full Text PDFThe zebrafish (Danio rerio) is an increasingly popular model organism in cardiovascular research. Major insights into cardiac developmental processes have been gained by studies of embryonic zebrafish. However, the utility of zebrafish for modeling adult-onset heart disease has been limited by a lack of robust methods for in vivo evaluation of cardiac function.
View Article and Find Full Text PDFMutations in the giant sarcomeric protein titin (TTN) are a major cause for inherited forms of dilated cardiomyopathy (DCM). We have previously developed a mouse model that imitates a TTN truncation mutation we found in a large pedigree with DCM. While heterozygous Ttn knock-in mice do not display signs of heart failure under sedentary conditions, they recapitulate the human phenotype when exposed to the pharmacological stressor angiotensin II or isoproterenol.
View Article and Find Full Text PDFAims: To determine the mechanisms by which the α1A-adrenergic receptor (AR) regulates cardiac contractility.
Background: We reported previously that transgenic mice with cardiac-restricted α1A-AR overexpression (α1A-TG) exhibit enhanced contractility but not hypertrophy, despite evidence implicating this Gαq/11-coupled receptor in hypertrophy.
Methods: Contractility, calcium (Ca(2+)) kinetics and sensitivity, and contractile proteins were examined in cardiomyocytes, isolated hearts and skinned fibers from α1A-TG mice (170-fold overexpression) and their non-TG littermates (NTL) before and after α1A-AR agonist stimulation and blockade, angiotensin II (AngII), and Rho kinase (ROCK) inhibition.
It is widely believed that perinatal cardiomyocyte terminal differentiation blocks cytokinesis, thereby causing binucleation and limiting regenerative repair after injury. This suggests that heart growth should occur entirely by cardiomyocyte hypertrophy during preadolescence when, in mice, cardiac mass increases many-fold over a few weeks. Here, we show that a thyroid hormone surge activates the IGF-1/IGF-1-R/Akt pathway on postnatal day 15 and initiates a brief but intense proliferative burst of predominantly binuclear cardiomyocytes.
View Article and Find Full Text PDFLamin A/C mutations are the most common cause of familial dilated cardiomyopathy (DCM) but the pathogenetic mechanisms are incompletely understood. Nesprins are spectrin repeat-containing proteins that interact with lamin A/C and are components of the linker-of-nucleoskeleton-and-cytoskeleton (LINC) complex that connects the nuclear envelope to the actin cytoskeleton. Our aim was to determine whether changes in nesprin-1 and actin might contribute to DCM in homozygous Lmna knockout (Lmna(-/-)) mice.
View Article and Find Full Text PDFRationale: Mutations in the LMNA gene, which encodes the nuclear lamina proteins lamin A and lamin C, are the most common cause of familial dilated cardiomyopathy (DCM). Mechanical stress-induced apoptosis has been proposed as the mechanism underpinning DCM in lamin A/C-deficient hearts, but supporting in vivo evidence has been lacking.
Objective: Our aim was to study interventions to modify mechanical stress in heterozygous Lmna knockout (Lmna(+/-)) mice.
Laminopathies are a group of disorders caused by mutations in the LMNA gene that encodes the nuclear lamina proteins, lamin A and lamin C; their pathophysiological basis is unknown. We report that lamin A/C-deficient (Lmna(-/-)) mice develop rapidly progressive dilated cardiomyopathy (DCM) characterized by left ventricular (LV) dilation and reduced systolic contraction. Isolated Lmna(-/-) myocytes show reduced shortening with normal baseline and peak amplitude of Ca(2+) transients.
View Article and Find Full Text PDFBackground: The aim of this study was to determine the efficacy of cariporide (a sodium-hydrogen exchanger inhibitor), BMS180448 (a pharmacologic ischemic preconditioning agent), and the combination thereof, as adjuvant therapies for extended cardiac allograft preservation.
Methods: A porcine model of donor brain death and orthotopic heart transplantation was used. All hearts were arrested and stored for 14 hr in an extracellular preservation solution.
Background: Acute brain death from increased intracranial pressure results in a transient increase in myocardial adenosine and lactate, which indicates that oxygen demand exceeds oxygen delivery during the sympathetic "storm". The aim of this study was to determine the functional significance of this period of ischemia.
Methods: Brain death was inflicted on 40 Westran pigs (36.
Objective: To determine if the initial rate of troponin I release post-reperfusion reflects the effectiveness of myocardial protection during cardiac allograft preservation.
Methods: A porcine model of orthotopic heart transplantation was used. Data from two control groups (CON(4) and CON(14)) and two treatment groups (CAR(4) and CAR(14)) were analysed.
Background: Acute graft dysfunction caused by ischemia-reperfusion injury is recognized as a major source of morbidity and mortality following adult heart transplantation. The aim of this study was to determine whether treating the donor and recipient with cariporide, an inhibitor of the sodium-hydrogen exchanger, could reduce ischemia-reperfusion injury.
Methods: A porcine model of donor brain death, hypothermic ischemic preservation, and orthotopic cardiac transplantation was used.
Objective: Paradoxically, it has been reported that after 1.5-4 h of hypothermic ischaemic preservation there is complete recovery of contractile function in canine cardiac allografts, as assessed by the preload recruitable stroke work (PRSW) relationship. This raises questions about the suitability of the canine heart as a model for preservation research and the PRSW relationship as an end-point.
View Article and Find Full Text PDF