Publications by authors named "Scott Juntti"

Reproductive behaviors differ across species, but the mechanisms that control variation in mating and parental care systems remain unclear. In many animal species, pheromones guide mating and parental care. However, it is not well understood how vertebrate pheromone signaling evolution can lead to new reproductive behavior strategies.

View Article and Find Full Text PDF

African cichlid fishes of the Cichlidae family are a group of teleosts important for aquaculture and research. A thriving research community is particularly interested in the cichlid radiations of the East African Great Lakes. One key goal is to pinpoint genetic variation underlying phenotypic diversification, but the lack of genetic tools has precluded thorough dissection of the genetic basis of relevant traits in cichlids.

View Article and Find Full Text PDF

Animal sensory systems are tightly adapted to the demands of their environment. In the visual domain, research has shown that many species have circuits and systems that exploit statistical regularities in natural visual signals. The zebrafish is a popular model animal in visual neuroscience, but relatively little quantitative data is available about the visual properties of the aquatic habitats where zebrafish reside, as compared to terrestrial environments.

View Article and Find Full Text PDF

Pheromones are chemical signals that facilitate communication between animals, and most animals use pheromones for reproduction and other forms of social behavior. The identification of key ligands and olfactory receptors used for pheromonal communication provides insight into the sensory processing of these important cues. An individual's responses to pheromones can be plastic, as physiological status modulates behavioral outputs.

View Article and Find Full Text PDF

Pheromones play essential roles in reproduction in many species. Prostaglandin F (PGF) acts as a female reproductive hormone and as a sex pheromone in some species. An olfactory receptor (OR) for PGF was recently discovered in zebrafish, but this signaling pathway is evolutionarily labile.

View Article and Find Full Text PDF

Animals benefit from knowing if and how they are moving. Across the animal kingdom, sensory information in the form of optic flow over the visual field is used to estimate self-motion. However, different species exhibit strong spatial biases in how they use optic flow.

View Article and Find Full Text PDF

Identifying genetic loci underlying trait variation provides insights into the mechanisms of diversification, but demonstrating causality and characterizing the role of genetic loci requires testing candidate gene function, often in non-model species. Here we establish CRISPR/Cas9 editing in , a generalist cichlid of the remarkably diverse Lake Malawi radiation. By targeting the gene required for melanin synthesis in other vertebrate species, we show efficient editing and germline transmission.

View Article and Find Full Text PDF

Direct tests of gene function have historically been performed in a limited number of model organisms. The CRISPR/Cas system is species-agnostic, offering the ability to manipulate genes in a range of models, enabling insights into evolution, development, and physiology. Astatotilapia burtoni, a cichlid fish from the rivers and shoreline around Lake Tanganyika, has been extensively studied in the laboratory to understand evolution and the neural control of behavior.

View Article and Find Full Text PDF

Social hierarchies are ubiquitous in social species and profoundly influence physiology and behavior. Androgens like testosterone have been strongly linked to social status, yet the molecular mechanisms regulating social status are not known. The African cichlid fish is a powerful model species for elucidating the role of androgens in social status given their rich social hierarchy and genetic tractability.

View Article and Find Full Text PDF

Natural variations across animals in form, function, and behavior have long been sources of inspiration to scientists. Despite this, experimentalists focusing on the neural bases of behavior have increasingly focused on a select few model species. This consolidation is motivated primarily by the availability of resources and technologies for manipulation in these species.

View Article and Find Full Text PDF
Article Synopsis
  • Dopamine regulates reproduction by influencing the hypothalamic-pituitary-gonadal (HPG) axis and changing sex steroid levels.
  • Research has shown dopamine's inhibitory effects on the HPG axis in mammals, particularly its action on gonadotropin-releasing hormone (GnRH1) neurons.
  • This study reveals that teleost fish also exhibit dopaminergic control of GnRH1 neurons through dopamine type-2-like receptors, indicating that this mechanism may be shared among different vertebrate species.
View Article and Find Full Text PDF

Background: The East African riverine cichlid species Astatotilapia burtoni serves as an important laboratory model for sexually dimorphic physiology and behavior, and also serves as an outgroup species for the explosive adaptive radiations of cichlid species in Lake Malawi and Lake Victoria. An astounding diversity of genetic sex determination systems have been revealed within the adaptive radiation of East African cichlids thus far, including polygenic sex determination systems involving the epistatic interaction of multiple, independently segregating sex determination alleles. However, sex determination has remained unmapped in A.

View Article and Find Full Text PDF

In most species, females time reproduction to coincide with fertility. Thus, identifying factors that signal fertility to the brain can provide access to neural circuits that control sexual behaviors. In vertebrates, levels of key signaling molecules rise at the time of fertility to prime the brain for reproductive behavior [1-11], but how and where they regulate neural circuits is not known [12, 13].

View Article and Find Full Text PDF

Fish comprise half of extant vertebrate species and use a rich variety of reproductive strategies that have yielded insights into the basic mechanisms that evolved for sex. To maximize the chances of fertilization and survival of offspring, fish species time reproduction to occur at optimal times. For years, ethologists have performed painstaking experiments to identify sensory inputs and behavioral outputs of the brain during mating.

View Article and Find Full Text PDF

Initiating and regulating vertebrate reproduction requires pulsatile release of gonadotropin-releasing hormone (GnRH1) from the hypothalamus. Coordinated GnRH1 release, not simply elevated absolute levels, effects the release of pituitary gonadotropins that drive steroid production in the gonads. However, the mechanisms underlying synchronization of GnRH1 neurons are unknown.

View Article and Find Full Text PDF

Cichlid fishes represent one of the most species-rich and rapid radiations of a vertebrate family. These ~2200 species, predominantly found in the East African Great Lakes, exhibit dramatic differences in anatomy, physiology, and behavior. However, the genetic bases for this radiation, and for the control of their divergent traits, are unknown.

View Article and Find Full Text PDF

Sexual dimorphisms in the brain underlie behavioral sex differences, but the function of individual sexually dimorphic neuronal populations is poorly understood. Neuronal sexual dimorphisms typically represent quantitative differences in cell number, gene expression, or other features, and it is unknown whether these dimorphisms control sex-typical behavior exclusively in one sex or in both sexes. The progesterone receptor (PR) controls female sexual behavior, and we find many sex differences in number, distribution, or projections of PR-expressing neurons in the adult mouse brain.

View Article and Find Full Text PDF

Memory is essential for our normal daily lives and our sense of self. Ca(2+) influx through the NMDA-type glutamate receptor (NMDAR) and the ensuing activation of the Ca(2+) and calmodulin-dependent protein kinase (CaMKII) are required for memory formation and its physiological correlate, long-term potentiation (LTP). The Ca(2+) influx induces CaMKII binding to the NMDAR to strategically recruit CaMKII to synapses that are undergoing potentiation.

View Article and Find Full Text PDF

Testosterone and estrogen are essential for male behaviors in vertebrates. How these two signaling pathways interact to control masculinization of the brain and behavior remains to be established. Circulating testosterone activates the androgen receptor (AR) and also serves as the source of estrogen in the brain.

View Article and Find Full Text PDF

It has been known since antiquity that gender-specific behaviors are regulated by the gonads. We now know that testosterone is required for the appropriate display of male patterns of behavior. Estrogen and progesterone, on the other hand, are essential for female typical responses.

View Article and Find Full Text PDF