Publications by authors named "Scott J. Kemp"

Gastrointestinal (GI) bleeding causes more than 300 000 hospitalizations per year in the United States. Imaging plays a crucial role in accurately locating the source of the bleed for timely intervention. Magnetic particle imaging (MPI) is an emerging clinically translatable imaging modality that images superparamagnetic iron-oxide (SPIO) tracers with extraordinary contrast and sensitivity.

View Article and Find Full Text PDF

Emergency room visits due to traumatic brain injury (TBI) is common, but classifying the severity of the injury remains an open challenge. Some subjective methods such as the Glasgow Coma Scale attempt to classify traumatic brain injuries, as well as some imaging based modalities such as computed tomography and magnetic resonance imaging. However, to date it is still difficult to detect and monitor mild to moderate injuries.

View Article and Find Full Text PDF

Cancer remains one of the leading causes of death worldwide. Biomedical imaging plays a crucial role in all phases of cancer management. Physicians often need to choose the ideal diagnostic imaging modality for each clinical presentation based on complex trade-offs among spatial resolution, sensitivity, contrast, access, cost, and safety.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI) is an emerging tracer-based medical imaging modality that images non-radioactive, kidney-safe superparamagnetic iron oxide (SPIO) tracers. MPI offers quantitative, high-contrast and high-SNR images, so MPI has exceptional promise for applications such as cell tracking, angiography, brain perfusion, cancer detection, traumatic brain injury and pulmonary imaging. In assessing MPI's utility for applications mentioned above, it is important to be able to assess tracer short-term biodistribution as well as long-term clearance from the body.

View Article and Find Full Text PDF

Optimizing tracers for individual imaging techniques is an active field of research. The purpose of this study was to perform in vitro and in vivo magnetic particle imaging (MPI) measurements using a new monodisperse and size-optimized tracer, LS-008, and to compare it with the performance of Resovist, the standard MPI tracer. Magnetic particle spectroscopy (MPS) and in vitro MPI measurements were performed in concerns of concentration and amount of tracer in a phantom.

View Article and Find Full Text PDF

The magnetic response of magnetic particle imaging (MPI) tracers varies with the slew rate of the applied magnetic field, as well as with the tracer's average magnetic core size. Currently, 25 kHz and 20 mT/ drive fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. We studied how several different sizes of monodisperse MPI tracers behaved under different drive field amplitude and frequency, using magnetic particle spectrometry and ac hysteresis for drive field conditions at 16, 26, and 40 kHz, with field amplitudes from 5 to 40 mT/.

View Article and Find Full Text PDF

Surface coatings are important components of Magnetic Particle Imaging (MPI) tracers - they preserve their key properties responsible for optimum tracer performance in physiological environments. , surface coatings form a physical barrier between the hydrophobic SPION cores and the physiological environment, and their design dictates the blood half-life and biodistribution of MPI tracers. Here we show the effect of tuning poly(ethylene glycol) (PEG)-based surface coatings on both and (mouse model) MPI performance of SPIONs.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI) shows promise for medical imaging, particularly in angiography of patients with chronic kidney disease. As the first biomedical imaging technique that truly depends on nanoscale materials properties, MPI requires highly optimized magnetic nanoparticle tracers to generate quality images. Until now, researchers have relied on tracers optimized for MRI T2(∗) -weighted imaging that are sub-optimal for MPI.

View Article and Find Full Text PDF

Introduction of various modified prolines at P(2) and optimization of the P(1) side chain led to the discovery of SCH6 (24, Table 2), a potent ketoamide inhibitor of the HCV NS3 serine protease. In addition to excellent enzyme potency (K(i)*= 3.8 nM), 24 was also found to be a potent inhibitor of HCV subgenomic RNA replication with IC(50) and IC(90) of 40 and 100 nM, respectively.

View Article and Find Full Text PDF

Among promising new targets for antimalarial chemotherapy are the cysteine protease hemoglobinases falcipain-2 and falcipain-3. We evaluated the activities of synthetic peptidyl aldehyde and alpha-ketoamide cysteine protease inhibitors against these proteases, against cultured Plasmodium falciparum parasites, and in a murine malaria model. Optimized compounds inhibited falcipain-2 and falcipain-3, blocked hemoglobin hydrolysis, and prevented the development of P.

View Article and Find Full Text PDF

Novel, potent, and highly selective classes of thrombin inhibitors were identified, which resulted from judicious combination of P4-aromatics and P2-P3-heterocyclic dipeptide surrogates with weakly basic (calcd pKa approximately non-basic-8.6) bicyclic P1-arginine mimics. The design, synthesis, and biological activity of achiral, non-covalent, orally bioavailable inhibitors NC1-NC44 featuring P1-indazoles, benzimidazoles, indoles, benzotriazoles, and aminobenzisoxazoles is disclosed.

View Article and Find Full Text PDF

The formation of cyclic sulfates (4) from syn,syn-3-[N-(benzyloxycarbonyl)amino] 1,2-diols provides a common intermediate to access other diastereomers via two inversion procedures. Thermolysis of the cyclic sulfates in acetonitrile normally leads to inversion of the distal hydroxyl group to form a 1,3-oxazin-2-one (6). Catalytic hydrogenation of the cyclic sulfates under basic conditions (NEt(3)) results in inversion at the proximal hydroxyl group to form a 1,3-oxazolidin-2-one (5).

View Article and Find Full Text PDF