Publications by authors named "Scott J Janz"

Urban air pollution disproportionately harms communities of color and low-income communities in the U.S. Intraurban nitrogen dioxide (NO) inequalities can be observed from space using the TROPOspheric Monitoring Instrument (TROPOMI).

View Article and Find Full Text PDF
Article Synopsis
  • * The study used a Regional Chemical and Transport Model (REAM) to compare simulated NO data with actual measurements from aircraft, satellites, and ground instruments during the DISCOVER-AQ campaign in 2011 in the Baltimore-Washington area.
  • * While daytime model results generally matched observed NO concentrations well, nighttime data showed significant inaccuracies that could be improved by adjusting the model's vertical mixing parameters; also, higher-resolution simulations revealed inconsistencies in urban NO measurements.
View Article and Find Full Text PDF

The Lake Michigan Ozone Study 2017 (LMOS 2017) was a collaborative multiagency field study targeting ozone chemistry, meteorology, and air quality observations in the southern Lake Michigan area. The primary objective of LMOS 2017 was to provide measurements to improve air quality modeling of the complex meteorological and chemical environment in the region. LMOS 2017 science questions included spatiotemporal assessment of nitrogen oxides (NO = NO + NO) and volatile organic compounds (VOC) emission sources and their influence on ozone episodes; the role of lake breezes; contribution of new remote sensing tools such as GeoTASO, Pandora, and TEMPO to air quality management; and evaluation of photochemical grid models.

View Article and Find Full Text PDF

Airborne and ground-based Pandora spectrometer NO column measurements were collected during the 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City/Long Island Sound region, which coincided with early observations from the Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI) instrument. Both airborne- and ground-based measurements are used to evaluate the TROPOMI NO Tropospheric Vertical Column (TrVC) product v1.2 in this region, which has high spatial and temporal heterogeneity in NO.

View Article and Find Full Text PDF

NASA deployed the GeoTASO airborne UV-Visible spectrometer in May-June 2017 to produce high resolution (approximately 250 × 250 m) gapless NO datasets over the western shore of Lake Michigan and over the Los Angeles Basin. The results collected show that the airborne tropospheric vertical column retrievals compare well with ground-based Pandora spectrometer column NO observations (r=0.91 and slope of 1.

View Article and Find Full Text PDF

Houston, Texas is a major U.S. urban and industrial area where poor air quality is unevenly distributed and a disproportionate share is located in low-income, non-white, and Hispanic neighborhoods.

View Article and Find Full Text PDF