The serial ordering of individual movements into sequential patterns is thought to require synaptic plasticity within corticostriatal circuits that route information through the basal ganglia. We used genetically and anatomically targeted manipulations of specific circuit elements in mice to isolate the source and target of a corticostriatal synapse that regulates the performance of a serial order task. This excitatory synapse originates in secondary motor cortex, terminates on direct pathway medium spiny neurons in the dorsolateral striatum, and is strengthened by serial order learning.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2015
Drugs of abuse have detrimental effects on homeostatic synaptic plasticity in the motivational brain network. Bidirectional plasticity at excitatory synapses helps keep neural circuits within a functional range to allow for behavioral flexibility. Therefore, impaired bidirectional plasticity of excitatory synapses may contribute to the behavioral hallmarks of addiction, yet this relationship remains unclear.
View Article and Find Full Text PDFIn humans, neuroligin-3 mutations are associated with autism, whereas in mice, the corresponding mutations produce robust synaptic and behavioral changes. However, different neuroligin-3 mutations cause largely distinct phenotypes in mice, and no causal relationship links a specific synaptic dysfunction to a behavioral change. Using rotarod motor learning as a proxy for acquired repetitive behaviors in mice, we found that different neuroligin-3 mutations uniformly enhanced formation of repetitive motor routines.
View Article and Find Full Text PDFBackground: Most adults in Western society consume alcohol regularly without negative consequences. For a small subpopulation, however, drinking can quickly progress to excessive and chronic intake. Given the dangers associated with alcohol abuse, it is critical to identify traits that may place an individual at risk for developing these behaviors.
View Article and Find Full Text PDFNeuropsychopharmacology
February 2012
Impulsive action, the failure to withhold an inappropriate response, is treated clinically with dopamine agonists such as amphetamine. Despite the therapeutic efficacy, these drugs have inconsistent effects on impulsive action in rodents, causing improvements or disruptions in different tasks. Thus, we hypothesized that amphetamine is producing an effect by altering distinct cognitive processes in each task.
View Article and Find Full Text PDFImpulse control is an executive process that allows animals to inhibit their actions until an appropriate time. Previously, we reported that learning a simple response inhibition task increases AMPA currents at excitatory synapses in the prelimbic region of the medial prefrontal cortex (mPFC). Here, we examined whether modifications to intrinsic excitability occurred alongside the synaptic changes.
View Article and Find Full Text PDFPsychopharmacology (Berl)
April 2011
Rationale: Response inhibition, a primary symptom of many psychiatric disorders, is mediated through a complex neuropharmacological network that involves dopamine, serotonin, glutamate, noradrenaline, and cannabinoid mechanisms. Recently, we identified an opioidergic contribution to response inhibition by showing that deletion of mu or delta opioid receptors in mice alters motor impulsivity.
Objectives: We investigated this phenomenon further by testing whether pharmacological activation of opioid receptors disrupts the ability to inhibit a motor response.
Impulse control suppresses actions that are inappropriate in one context, but may be beneficial in others. The medial prefrontal cortex (mPFC) mediates this process by providing a top-down signal to inhibit competing responses, although the mechanism by which the mPFC acquires this ability is unknown. To that end, we examined synaptic changes in the mPFC associated with learning to inhibit an incorrect response.
View Article and Find Full Text PDF