We propose a variational multiscale method stabilization of a linear finite element method for nonlinear poroelasticity. Our approach is suitable for the implicit time integration of poroelastic formulations in which the solid skeleton is anisotropic and incompressible. A detailed numerical methodology is presented for a monolithic formulation that includes both structural dynamics and Darcy flow.
View Article and Find Full Text PDFModern approaches to modelling cardiac perfusion now commonly describe the myocardium using the framework of poroelasticity. Cardiac tissue can be described as a saturated porous medium composed of the pore fluid (blood) and the skeleton (myocytes and collagen scaffold). In previous studies fluid-structure interaction in the heart has been treated in a variety of ways, but in most cases, the myocardium is assumed to be a hyperelastic fibre-reinforced material.
View Article and Find Full Text PDF