The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology.
View Article and Find Full Text PDFThe risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the allele. Elderly cognitively healthy individuals with also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of ; however, these mechanisms are unknown. We hypothesized that carriers without dementia might carry genetic variations that could protect them from developing mediated AD pathology.
View Article and Find Full Text PDFWithin the developing embryo, cells assemble and remodel their surrounding extracellular matrix during morphogenesis. Fibronectin is an extracellular matrix glycoprotein and is a ligand for several members of the Integrin adhesion receptor family. Here, we compare the expression pattern and loss of function phenotypes of the two zebrafish fibronectin paralogs fn1a and fn1b.
View Article and Find Full Text PDFMechanosensing is a ubiquitous process to translate external mechanical stimuli into biological responses. Piezo1 ion channels are directly gated by mechanical forces and play an essential role in cellular mechanotransduction. However, readouts of Piezo1 activity are mainly examined by invasive or indirect techniques, such as electrophysiological analyses and cytosolic calcium imaging.
View Article and Find Full Text PDFDysregulated transcription factors (TFs) that rewire gene expression circuitry are frequently identified as key players in disease. Although several TFs have been drugged with small molecules, the majority of oncogenic TFs are not currently pharmaceutically tractable due to their paucity of ligandable pockets. The first generation of transcription factor targeting chimeras (TRAFTACs) was developed to target TFs for proteasomal degradation by exploiting their DNA binding ability.
View Article and Find Full Text PDFThe study of how neighboring tissues physically interact with each other, inter-tissue adhesion, is an emerging field at the interface of cell biology, biophysics and developmental biology. Inter-tissue adhesion can be mediated by either cell-extracellular matrix adhesion or cell-cell adhesion, and both the mechanisms and consequences of inter-tissue adhesion have been studied in vivo in numerous vertebrate and invertebrate species. In this Review, we discuss recent progress in understanding the many functions of inter-tissue adhesion in development and evolution.
View Article and Find Full Text PDFEmbryonic development is a complex process in which cells divide, migrate, and differentiate in a precise spatiotemporal pattern. Cell-cell communication among neighboring cells plays a central role in specifying cell fate and in coordinating development. Embryonic development also relies on physical interaction between cells and coordinated changes in cell shape.
View Article and Find Full Text PDFIntegrins are heterodimeric cell surface receptors composed of an α and β subunit that mediate cell adhesion to extracellular matrix proteins such as fibronectin. We previously studied integrin α5β1 activation during zebrafish somitogenesis, and in the present study, we characterize the integrin αV fibronectin receptors. Integrins are activated via a conformational change, and we perform single-molecule biophysical measurements of both integrin activation via fluorescence resonance energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM) and integrin intra-heterodimer stability via fluorescence cross-correlation spectroscopy (FCCS) in living embryos.
View Article and Find Full Text PDFMany diseases, including cancer, stem from aberrant activation or overexpression of oncoproteins that are associated with multiple signaling pathways. Although proteins with catalytic activity can be successfully drugged, the majority of other protein families, such as transcription factors, remain intractable due to their lack of ligandable sites. In this study, we report the development of TRAnscription Factor TArgeting Chimeras (TRAFTACs) as a generalizable strategy for targeted transcription factor degradation.
View Article and Find Full Text PDFNew research demonstrates that mechanics can serve as a means of information propagation in developing embryos. Historically, the study of embryonic development has had a dichotomy between morphogens and pattern formation on the one hand and morphogenesis and mechanics on the other. Secreted signals are the preeminent means of information propagation between cells and used to control cell fate, while physical forces act downstream or in parallel to shape tissue morphogenesis.
View Article and Find Full Text PDFAn extracellular matrix of Fibronectin adheres the neural tube to the two flanking columns of paraxial mesoderm and is required for normal vertebrate development. Here, we find that the bilaterally symmetric interfaces between the zebrafish neural tube and paraxial mesoderm function as optimally engineered adhesive lap joints with rounded edges, graded Fibronectin 'adhesive' and an arced adhesive spew filet. Fibronectin is a 'smart adhesive' that remodels to the lateral edges of the neural tube-paraxial mesoderm interfaces where shear stress is highest.
View Article and Find Full Text PDFEmbryonic organizers establish gradients of diffusible signaling molecules to pattern the surrounding cells. Here, we elucidate an additional mechanism of embryonic organizers that is a secondary consequence of morphogen signaling. Using pharmacological and localized transgenic perturbations, 4D imaging of the zebrafish embryo, systematic analysis of cell motion, and computational modeling, we find that the vertebrate tail organizer orchestrates morphogenesis over distances beyond the range of morphogen signaling.
View Article and Find Full Text PDFThe biomechanics of posterior embryonic growth must be dynamically regulated to ensure bilateral symmetry of the spinal column. Throughout vertebrate trunk elongation, motile mesodermal progenitors undergo an order-to-disorder transition via an epithelial-to-mesenchymal transition and sort symmetrically into the left and right paraxial mesoderm. We combine theoretical modeling of cell migration in a tail-bud-like geometry with experimental data analysis to assess the importance of ordered and disordered cell motion.
View Article and Find Full Text PDFDifferential cadherin (Cdh) expression is a classical mechanism for in vitro cell sorting. Studies have explored the roles of differential Cdh levels in cell aggregates and during vertebrate gastrulation, but the role of differential Cdh activity in forming in vivo tissue boundaries and boundary extracellular matrix (ECM) is unclear. Here, we examine the interactions between cell-cell and cell-ECM adhesion during somitogenesis, the formation of the segmented embryonic precursors of the vertebral column and musculature.
View Article and Find Full Text PDFCurr Opin Cell Biol
October 2015
In this review, we highlight recent re-evaluations of the classical cell sorting models and their application to understanding embryonic morphogenesis. Modern genetic and biophysical techniques reveal that tissue self-assembly is not solely a result of differential adhesion, but rather incorporates dynamic cytoskeletal tension and extracellular matrix assembly. There is growing evidence that these biomechanical modules cooperate to organize developing tissues.
View Article and Find Full Text PDFThe diverse morphologies of animal tissues are underlain by different configurations of adherent cells and extracellular matrix (ECM). Here, we elucidate a cross-scale mechanism for tissue assembly and ECM remodeling involving Cadherin 2, the ECM protein Fibronectin, and its receptor Integrin α5. Fluorescence cross-correlation spectroscopy within the zebrafish paraxial mesoderm mesenchyme reveals a physical association between Integrin α5 on adjacent cell membranes.
View Article and Find Full Text PDFOver a thousand extracts were tested for phenotypic effects in developing zebrafish embryos to identify bioactive molecules produced by endophytic fungi. One extract isolated from Fusarium sp., a widely distributed fungal genus found in soil and often associated with plants, induced an undulated notochord in developing zebrafish embryos.
View Article and Find Full Text PDFEngland's King Richard III, whose skeleton was recently discovered lying ignobly beneath a parking lot, suffered from a lateral curvature of his spinal column called scoliosis. We now know that his scoliosis was not caused by 'imbalanced bodily humors', rather vertebral defects arise from defects in embryonic elongation and segmentation. This review highlights recent advances in our understanding of post-gastrulation biomechanics of the posteriorly advancing tailbud and somite morphogenesis.
View Article and Find Full Text PDFDuring segmentation of vertebrate embryos, somites form in accordance with a periodic pattern established by the segmentation clock. In the zebrafish (Danio rerio), the segmentation clock includes six hairy/enhancer of split-related (her/hes) genes, five of which oscillate due to negative autofeedback. The nonoscillating gene hes6 forms the hub of a network of 10 Her/Hes protein dimers, which includes 7 DNA-binding dimers and 4 weak or non-DNA-binding dimers.
View Article and Find Full Text PDFDuring embryonic development and tissue homeostasis, cells produce and remodel the extracellular matrix (ECM). The ECM maintains tissue integrity and can serve as a substrate for cell migration. Integrin α5 (Itgα5) and αV (ItgαV) are the α subunits of the integrins most responsible for both cell adhesion to the ECM protein fibronectin (FN) and FN matrix fibrillogenesis.
View Article and Find Full Text PDFThe tailbud is the posterior leading edge of the growing vertebrate embryo and consists of motile progenitors of the axial skeleton, musculature and spinal cord. We measure the 3D cell flow field of the zebrafish tailbud and identify changes in tissue fluidity revealed by reductions in the coherence of cell motion without alteration of cell velocities. We find a directed posterior flow wherein the polarization between individual cell motion is high, reflecting ordered collective migration.
View Article and Find Full Text PDFBackground: During segmentation of the zebrafish embryo, inside-out signaling activates Integrin α5, which is necessary for somite border morphogenesis. The direct activator of Integrin α5 during this process is unknown. One candidate is Rap1b, a small monomeric GTPase implicated in Integrin activation in the immune system.
View Article and Find Full Text PDFFibroblast growth factor (Fgf) and Wnt signaling are necessary for the intertwined processes of tail elongation, mesodermal development and somitogenesis. Here, we use pharmacological modifiers and time-resolved quantitative analysis of both nascent transcription and protein phosphorylation in the tailbud, to distinguish early effects of signal perturbation from later consequences related to cell fate changes. We demonstrate that Fgf activity elevates Wnt signaling by inhibiting transcription of the Wnt antagonists dkk1 and notum1a.
View Article and Find Full Text PDF