Global plastic production has surged since the 1960s, resulting in the pervasive presence of microplastics in the environment, yet there is a substantial gap in understanding historical trends of plastic pollution in wildlife. Recent discoveries of significant microplastic contamination in fishes have sparked considerable contemporary advancements in analytical methods and hold the potential to fill gaps in historical trends. We measured the presence of microplastics in museum-archived myctophids (Stenobrachius leucopsarus, Diaphus theta, and Tarletonbeania crenularis) collected from 1962 to 2016, to determine if trends in contamination levels over time correspond with the rise in plastics production.
View Article and Find Full Text PDFDispersal of eggs and larvae from spawning sites is critical to the population dynamics and conservation of marine fishes. For overfished species like critically endangered Nassau grouper (), recovery depends on the fate of eggs spawned at the few remaining aggregation sites. Biophysical models can predict larval dispersal, yet these rely on assumed values of key parameters, such as diffusion and mortality rates, which have historically been difficult or impossible to estimate.
View Article and Find Full Text PDFMeasuring the spatial distribution of microparticles which include synthetic, semi-synthetic, and anthropogenic particles is critical to understanding their potential negative impacts on species. This is particularly important in the context of microplastics, which are a form of microparticle that are prevalent in the marine environment. To facilitate a better understanding of microparticle occurrence, including microplastics, we sampled subadult and young juvenile Black Rockfish () at multiple Oregon coast sites, and their gastrointestinal tracts were analyzed to identify ingested microparticles.
View Article and Find Full Text PDFThiamine (vitamin B) metabolism is an important driver of human and animal health and ecological functioning. Some organisms, including species of ferns, mollusks, and fish, contain thiamine-degrading enzymes known as thiaminases, and consumption of these organisms can lead to thiamine deficiency in the consumer. Consumption of fish containing thiaminase has led to elevated mortality and recruitment failure in farmed animals and wild salmonine populations around the world.
View Article and Find Full Text PDFPassive acoustic monitoring of ocean soundscapes can provide information on ecosystem status for those tasked with protecting marine resources. In 2015, the National Oceanic and Atmospheric Administration (NOAA) established a long-term, continuous, low-frequency (10 Hz-2 kHz) passive acoustic monitoring site in the Cordell Bank National Marine Sanctuary (CBNMS), located offshore of the central United States of America (U.S.
View Article and Find Full Text PDFMany large-bodied marine fishes that form spawning aggregations, such as the Nassau grouper (), have suffered regional overfishing due to exploitation during spawning. In response, marine resource managers in many locations have established marine protected areas or seasonal closures to recover these overfished stocks. The challenge in assessing management effectiveness lies largely in the development of accurate estimates to track stock size through time.
View Article and Find Full Text PDFDespite evidence of maternal age effects in a number of teleost species, there have been challenges to the assertion that maternal age intrinsically influences offspring quality. From an evolutionary perspective, maternal age effects result in young females paradoxically investing in less fit offspring despite a greater potential fitness benefit that might be gained by allocating this energy to individual somatic growth. Although a narrow range of conditions could lead to a maternal fitness benefit via the production of lower quality offspring, evolutionary theorists suggest these conditions are seldom met and that the reported maternal age effects are more likely products of the environmental context.
View Article and Find Full Text PDFTo address patterns of genetic connectivity in a mass-aggregating marine fish, we analyzed genetic variation in mitochondrial DNA (mtDNA), microsatellites, and single nucleotide polymorphisms (SNPs) for Nassau grouper (Epinephelus striatus). We expected Nassau grouper to exhibit genetic differentiation among its subpopulations due to its reproductive behavior and retentive oceanographic conditions experienced across the Caribbean basin. All samples were genotyped for two mitochondrial markers and 9 microsatellite loci, and a subset of samples were genotyped for 4,234 SNPs.
View Article and Find Full Text PDFSpatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three co-occurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla), thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus ursinus). Predictions of statistical models were tested using movement patterns obtained from satellite-tracked individual animals.
View Article and Find Full Text PDFPopulations of gag (Mycteroperca microlepis), a hermaphroditic grouper, have experienced a dramatic shift in sex ratio over the past 25 years due to a decline in older age classes. The highly female-skewed sex ratio can be predicted as a consequence of increased fishing mortality that truncates the age distribution, and raises some concern about the overall fitness of the population. Management efforts may need to be directed toward maintenance of sex ratio as well as stock size, with evaluations of recruitment based on sex ratio or male stock size in addition to the traditional female-based stock-recruitment relationship.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
September 2005
Androgens are known to play many roles in the reproductive physiology of teleosts, but less information exists on the role that they play in the development of larval and juvenile fish. This study examines an observed seasonal cycle of 11-ketotestosterone (11KT) in females of the hermaphroditic gag grouper (Mycteroperca microlepis). Otoliths, gonads, and plasma samples from gag were collected quarterly (spring, summer, fall, and winter), with complete data (age, sex, and androgen levels) obtained from a total of 225 individuals.
View Article and Find Full Text PDF