Purpose: The goal of this study was to develop an algorithm that enhances the temporal resolution of two-dimensional color Doppler echocardiography (2D CDE) by reordering all the acquired frames and filtering out the frames corrupted by out-of-plane motion and arrhythmia.
Methods: The algorithm splits original frame sequence into the fragments based on the correlation with a reference frame. Then, the fragments are aligned temporally and merged into a resulting sequence that has higher temporal resolution.
Mitral effective regurgitant orifice area (EROA) using the flow convergence (FC) method is used to quantify the severity of mitral regurgitation (MR). However, it is challenging and prone to interobserver variability in complex valvular pathology. We hypothesized that real-time three-dimensional (3D) transesophageal echocardiography (RT3D TEE) derived anatomic regurgitant orifice area (AROA) can be a reasonable adjunct, irrespective of valvular geometry.
View Article and Find Full Text PDFAims: Two-dimensional speckle tracking echocardiography (2DSTE) allows measurements of left ventricular (LV) volumes and LV ejection fraction (LVEF) without manual tracings. Our goal was to determine the accuracy of 2DSTE against real-time 3D echocardiography (RT3DE) and against cardiac magnetic resonance (CMR) imaging.
Methods And Results: In Protocol 1, 2DSTE data in the apical four-chamber view (iE33, Philips) and CMR images (Philips 1.