Vitamin D receptor (VDR) has been implicated in fatty liver pathogenesis, but its role in the regulation of organismal energy usage remains unclear. Here, we illuminate the evolutionary function of VDR by demonstrating that zebrafish Vdr coordinates hepatic and organismal energy homeostasis through antagonistic regulation of nutrient storage and tissue growth. Hepatocyte-specific Vdr impairment increases hepatic lipid storage, partially through acsl4a induction, while simultaneously diminishing fatty acid oxidation and liver growth.
View Article and Find Full Text PDFEthanol (EtOH) is a commonly encountered teratogen that can disrupt organ development and lead to fetal alcohol spectrum disorders (FASDs); many mechanisms of developmental toxicity are unknown. Here, we used transcriptomic analysis in an established zebrafish model of embryonic alcohol exposure (EAE) to identify the ubiquitin-proteasome system (UPS) as a critical target of EtOH during development. Surprisingly, EAE alters 20S, 19S, and 11S proteasome gene expression and increases ubiquitylated protein load.
View Article and Find Full Text PDFTissues and cells require fuel and cellular building blocks to respond to proliferative cues. In this issue of Developmental Cell, Vaidyanathan and colleagues modulate yes-associated protein (YAP) signaling and its downstream targets, together with phenotyping and metabolic tracing, to determine the central role of YAP in lipogenesis and associated liver growth.
View Article and Find Full Text PDFSemin Liver Dis
November 2020
Hepatocytes and biliary epithelial cells (BECs), the two endodermal cell types of the liver, originate from progenitor cells called hepatoblasts. Based principally on in vitro data, hepatoblasts are thought to be bipotent stem cells with the potential to produce both hepatocytes and BECs. However, robust in vivo evidence for this model has only recently emerged.
View Article and Find Full Text PDFGene duplication confers genetic redundancy that can facilitate subfunctionalization, the partitioning of ancestral functions between paralogs. We capitalize on a recent genome duplication in Xenopus laevis (African clawed frog) to interrogate possible functional differentiation between alloalleles of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor that mediates toxicity of dioxin-like compounds and plays a role in the physiology and development of the cardiovascular, hepatic, and immune systems in vertebrates. X.
View Article and Find Full Text PDF