The remarkable diversity of insect pigmentation offers a captivating avenue for studying evolution and genetics. In tephritids, understanding the molecular basis of mutant traits is also crucial for applied entomology, enabling the creation of genetic sexing strains through genome editing, thus facilitating sex-sorting before sterile insect releases. Here, we present evidence from classical and modern genetics showing that the black pupae (bp) phenotype in the GUA10 strain of Anastrepha ludens is caused by a large deletion at the ebony locus, removing the gene's entire coding region.
View Article and Find Full Text PDFComparative genomic studies of social insects suggest that changes in gene regulation are associated with evolutionary transitions in social behavior, but the activity of predicted regulatory regions has not been tested empirically. We used self-transcribing active regulatory region sequencing, a high-throughput enhancer discovery tool, to identify and measure the activity of enhancers in the socially variable sweat bee, Lasioglossum albipes. We identified over 36,000 enhancers in the L.
View Article and Find Full Text PDFUnderstanding the genetics of adaptation and speciation is critical for a complete picture of how biodiversity is generated and maintained. Heterogeneous genomic differentiation between diverging taxa is commonly documented, with genomic regions of high differentiation interpreted as resulting from differential gene flow, linked selection and reduced recombination rates. Disentangling the roles of each of these non-exclusive processes in shaping genome-wide patterns of divergence is challenging but will enhance our knowledge of the repeatability of genomic landscapes across taxa.
View Article and Find Full Text PDFThe Hunt bumble bee, Bombus huntii, is a widely distributed pollinator in western North America. The species produces large colony sizes in captive rearing conditions, experiences low parasite and pathogen loads, and has been demonstrated to be an effective pollinator of tomatoes grown in controlled environment agriculture systems. These desirable traits have galvanized producer efforts to develop commercial Bombus huntii colonies for growers to deliver pollination services to crops.
View Article and Find Full Text PDFRapidly evolving taxa are excellent models for understanding the mechanisms that give rise to biodiversity. However, developing an accurate historical framework for comparative analysis of such lineages remains a challenge due to ubiquitous incomplete lineage sorting (ILS) and introgression. Here, we use a whole-genome alignment, multiple locus-sampling strategies, and summary-tree and single nucleotide polymorphism-based species-tree methods to infer a species tree for eastern North American Neodiprion species, a clade of pine-feeding sawflies (Order: Hymenopteran; Family: Diprionidae).
View Article and Find Full Text PDFThe utility of a universal DNA 'barcode' fragment (658 base pairs of the Cytochrome C Oxidase I [COI] gene) has been established as a useful tool for species identification, and widely criticized as one for understanding the evolutionary history of a group. Large amounts of COI sequence data have been produced that hold promise for rapid species identification, for example, for biosecurity. The fruit fly tribe Dacini holds about a thousand species, of which 80 are pests of economic concern.
View Article and Find Full Text PDFThe implementation of a new genomic assembly pipeline named only the best (otb) has effectively addressed various challenges associated with data management during the development and storage of genome assemblies. otb, which incorporates a comprehensive pipeline involving a setup layer, quality checks, templating, and the integration of Nextflow and Singularity. The primary objective of otb is to streamline the process of creating a HiFi/HiC genome, aiming to minimize the manual intervention required in the genome assembly process.
View Article and Find Full Text PDFThe lack of interoperable data standards among reference genome data-sharing platforms inhibits cross-platform analysis while increasing the risk of data provenance loss. Here, we describe the FAIR bioHeaders Reference genome (FHR), a metadata standard guided by the principles of Findability, Accessibility, Interoperability and Reuse (FAIR) in addition to the principles of Transparency, Responsibility, User focus, Sustainability and Technology. The objective of FHR is to provide an extensive set of data serialisation methods and minimum data field requirements while still maintaining extensibility, flexibility and expressivity in an increasingly decentralised genomic data ecosystem.
View Article and Find Full Text PDFThe West Indian fruit fly, Anastrepha obliqua, is a major pest of mango in Central and South America and attacks more than 60 species of host fruits. To support current genetic and genomic research on A. obliqua, we sequenced the genome using high-fidelity long-read sequencing.
View Article and Find Full Text PDFThe Mojave poppy bee, Perdita meconis Griswold (Hymenoptera: Anthophila: Andrenidae), is a species of conservation concern that is restricted to the eastern Mojave Desert of North America. It is a specialist pollinator of two poppy genera, Arctomecon and Argemone (Papaveraceae), and is being considered for listing under the US Endangered Species Act along with one of its pollinator hosts, the Las Vegas bearpoppy (Arctomecon californica). Here, we present a near chromosome-level genome of the Mojave poppy bee to provide a genomic resource that will aid conservation efforts and future research.
View Article and Find Full Text PDFThe lack of interoperable data standards among reference genome data-sharing platforms inhibits cross-platform analysis while increasing the risk of data provenance loss. Here, we describe the FAIR-bioHeaders Reference genome (FHR), a metadata standard guided by the principles of Findability, Accessibility, Interoperability, and Reuse (FAIR) in addition to the principles of Transparency, Responsibility, User focus, Sustainability, and Technology (TRUST). The objective of FHR is to provide an extensive set of data serialisation methods and minimum data field requirements while still maintaining extensibility, flexibility, and expressivity in an increasingly decentralised genomic data ecosystem.
View Article and Find Full Text PDFInsect pests cause tremendous impact to agriculture worldwide. Species identification is crucial for implementing appropriate measures of pest control but can be challenging in closely related species. True fruit flies of the genus Schiner (Diptera: Tephritidae) include some of the most serious agricultural pests in the Americas, with the (Wiedemann) complex being one of the most important due to its extreme polyphagy and wide distribution across most of the New World tropics and subtropics.
View Article and Find Full Text PDFGut microbiota are important contributors to insect success. Host-microbe interactions are dynamic and can change as hosts age and/or encounter different environments. A turning point in these relationships the transition from immature to adult life stages, particularly for holometabolous insects where there is radical restructuring of the gut.
View Article and Find Full Text PDFAs genomic data proliferates, the prevalence of post-speciation gene flow is making species boundaries and relationships increasingly ambiguous. Although current approaches inferring fully bifurcating phylogenies based on concatenated datasets provide simple and robust answers to many species relationships, they may be inaccurate because the models ignore inter-specific gene flow and incomplete lineage sorting. To examine the potential error resulting from ignoring gene flow, we generated both a RAD-seq and a 500 protein-coding loci highly multiplexed amplicon (HiMAP) dataset for a monophyletic group of 12 species defined as the Bactrocera dorsalis sensu lato clade.
View Article and Find Full Text PDFBackground: The small hive beetle (SHB), Aethina tumida, has emerged as a worldwide threat to honey bees in the past two decades. These beetles harvest nest resources, feed on larval bees, and ultimately spoil nest resources with gelatinous slime together with the fungal symbiont Kodamaea ohmeri.
Results: Here, we present the first chromosome-level genome assembly for the SHB.
The parasitoid wasp Venturia canescens is an important biological control agent of stored products moth pests and serves as a model to study the function and evolution of domesticated endogenous viruses (DEVs). The DEVs discovered in V. canescens are known as virus-like particles (VcVLPs), which are produced using nudivirus-derived components and incorporate wasp-derived virulence proteins instead of packaged nucleic acids.
View Article and Find Full Text PDFThe rusty patched bumble bee, Bombus affinis, is an important pollinator in North America and a federally listed endangered species. Due to habitat loss and large declines in population size, B. affinis is facing imminent extinction unless human intervention and recovery efforts are implemented.
View Article and Find Full Text PDFBiological introductions are unintended "natural experiments" that provide unique insights into evolutionary processes. Invasive phytophagous insects are of particular interest to evolutionary biologists studying adaptation, as introductions often require rapid adaptation to novel host plants. However, adaptive potential of invasive populations may be limited by reduced genetic diversity-a problem known as the "genetic paradox of invasions.
View Article and Find Full Text PDFThe pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), is a major global pest of cotton. Current management practices include chemical insecticides, cultural strategies, sterile insect releases, and transgenic cotton producing crystalline (Cry) protein toxins of the bacterium Bacillus thuringiensis (Bt). These strategies have contributed to the eradication of P.
View Article and Find Full Text PDFMultiplexed amplicon sequencing offers a cost-effective and rapid solution for phylogenomic studies that include a large number of individuals. Selecting informative genetic markers is a critical initial step in designing such multiplexed amplicon panels, but screening various genomic data and selecting markers that are informative for the question at hand can be laborious. Here, we present a flexible and user-friendly tool, HiMAP2, for identifying, visualizing and filtering phylogenetically informative loci from diverse genomic and transcriptomic resources.
View Article and Find Full Text PDFThe boll weevil, Anthonomus grandis grandis Boheman, is one of the most historically impactful insects due to its near destruction of the US cotton industry in the early 20th century. Contemporary efforts to manage this insect primarily use pheromone baited traps for detection and organophosphate insecticides for control, but this strategy is not sustainable due to financial and environmental costs. We present a high-quality boll weevil genome assembly, consisting of 306 scaffolds with approximately 24,000 annotated genes, as a first step in the identification of gene targets for novel pest control.
View Article and Find Full Text PDFTephritid fruit flies are among the most invasive and destructive agricultural pests worldwide. Over recent years, many studies have implemented the CRISPR/Cas9 genome-editing technology to dissect gene functions in tephritids and create new strains to facilitate their genetics, management, and control. This growing literature allows us to compare diverse strategies for delivering CRISPR/Cas9 components into tephritid embryos, optimize procedures, and advance the technology to systems outside the most thoroughly studied species within the family.
View Article and Find Full Text PDF