Publications by authors named "Scott G Miller"

Transcription factor IID (TFIID) plays a key role in regulating eukaryotic gene expression by directly binding promoters and enhancer-bound transactivator proteins. However, the precise mechanisms and outcomes of transactivator-TFIID interaction remain unclear. Transcription of yeast ribosomal protein genes requires TFIID and the DNA-binding transactivator Rap1.

View Article and Find Full Text PDF

4-Oxalocrotonate tautomerase (4-OT), a homohexameric enzyme, converts the unconjugated enone, 2-oxo-4-hexenedioate (1), to the conjugated enone, 2-oxo-3-hexenedioate (3), via a dienolic intermediate, 2-hydroxymuconate (2). Pro-1 serves as the general base, and both Arg-11 and Arg-39 function in substrate binding and catalysis in an otherwise hydrophobic active site. Although 4-OT exhibits hyperbolic kinetics and no structural asymmetry either by X-ray or by NMR, inactivation by two affinity labels showed half-site stoichiometry [Stivers, J.

View Article and Find Full Text PDF

The sensitivity of in vivo transgenic mutation assays benefits from the sequencing of mutations, although the large number of possible mutations hinders high throughput sequencing. A forward mutational assay exists for Phi X174 that requires an altered, functional Phi X174 protein and therefore should have fewer targets (sense, base-pair substitutions) than forward assays that inactivate a protein. We investigated this assay to determine the number of targets and their suitability for detecting a known mutagen, N-ethyl-N-nitrosourea (ENU).

View Article and Find Full Text PDF