Publications by authors named "Scott Durum"

Article Synopsis
  • Skin colonization and eosinophil infiltration are linked to several inflammatory skin disorders, but the role of eosinophils in skin inflammation is not fully understood.
  • A mouse model study showed that exposure to certain conditions increased eosinophil-recruiting chemokines and led to notable eosinophil infiltration, contributing significantly to skin inflammation alongside T cells.
  • The research identified that IL-36R signaling and proteases are critical in this process, as they promote the recruitment of eosinophils producing IL-17, revealing new insights into how skin inflammation develops in various skin diseases.
View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) is an aggressive leukemia which can be derived from either T-cell or B-cell precursors. With current treatments, the survival rate is high, but the treatments are highly toxic with severe side effects. Individual mutations in IL7Ra and RAS pathways have been previously shown to be prevalent in ALL, and especially in relapsed patients.

View Article and Find Full Text PDF

Methotrexate (MTX) is a tight-binding dihydrofolate reductase (DHFR) inhibitor, used as both an antineoplastic and immunosuppressant therapeutic. MTX, like folate undergoes folylpolyglutamate synthetase-mediated γ-glutamylation, which affects cellular retention and target specificity. Mechanisms of MTX resistance in cancers include a decrease in MTX poly-γ-glutamylation and an upregulation of DHFR.

View Article and Find Full Text PDF

Transduced mouse immature thymocytes can be differentiated into T cells in vitro using the delta-like 4-expressing bone marrow stromal cell line co-culture system (OP9-DL4). As retroviral transduction requires dividing cells for transgene integration, OP9-DL4 provides a suitable in vitro environment for cultivating hematopoietic progenitor cells. This is particularly advantageous when studying the effects of the expression of a specific gene during normal T cell development and leukemogenesis, as it allows researchers to circumvent the time-consuming process of generating transgenic mice.

View Article and Find Full Text PDF

Background: Formyl peptide receptor 2 (Fpr2) plays a crucial role in colon homeostasis and microbiota balance. Commensal E. coli is known to promote the regeneration of damaged colon epithelial cells.

View Article and Find Full Text PDF

Mucosal delivery of IL-27 has been shown to have a therapeutic benefit in murine models of inflammatory bowel disease (IBD). The IL-27 effect was associated with phosphorylated STAT1 (pSTAT1), a product of IL27 receptor signaling, in bowel tissue. To determine whether IL-27 acted directly on colonic epithelium, murine colonoids and primary intact colonic crypts were shown to be unresponsive to IL-27 and to lack detectable IL-27 receptors.

View Article and Find Full Text PDF

Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors.

View Article and Find Full Text PDF

Overview: IL-7 is a member of the family of cytokines with four anti-parallel α helixes that bind Type I cytokine receptors. It is produced by stromal cells and is required for development and homeostatic survival of lymphoid cells.

Genomic Architecture: Interleukin 7 (IL7) human IL7: gene ID: 3574 on ch 8; murine Il7 gene ID: 16,196 on ch 3.

View Article and Find Full Text PDF

A treatment with direct healing effects on the gastrointestinal epithelial barrier is desirable for inflammatory bowel disease (IBD). Interleukin-27 (IL-27) is an immunoregulatory cytokine, and oral delivery is an effective treatment in murine models of IBD. We aimed to define IL-27 effects on the human gastrointestinal epithelial barrier.

View Article and Find Full Text PDF
Article Synopsis
  • * In a study with mice, it was found that these "trained" ILC3s not only survive for months after being activated but also have improved ability to multiply and produce interleukin-22 (IL-22) when faced with a second infection.
  • * These findings suggest that temporary exposure to pathogens can lead to lasting enhancements in ILC3 functions, strengthening the immune response in the intestines over time.
View Article and Find Full Text PDF

The IL-7 pathway is required for normal T cell development and survival. In recent years the pathway has been shown to be a major driver of acute lymphoblastic leukemia (ALL), the most common cancer in children. Gain-of-function mutations in the alpha chain of the IL-7 receptor found in ALL patients clearly demonstrated that this pathway was a driver.

View Article and Find Full Text PDF

Oropharyngeal candidiasis (OPC; thrush) is an opportunistic infection caused by the commensal fungus Interleukin-17 (IL-17) and IL-22 are cytokines produced by type 17 lymphocytes. Both cytokines mediate antifungal immunity yet activate quite distinct downstream signaling pathways. While much is now understood about how IL-17 promotes immunity in OPC, the activities of IL-22 are far less well delineated.

View Article and Find Full Text PDF

The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their 'dark side' as promoters of cancer development.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a dismal prognosis in patients with resistant or relapsed disease. Although NOTCH is a known driver in T-ALL, its clinical inhibition has significant limitations. Our previous studies suggested that NRARP, a negative regulator of Notch signaling, could have a suppressive role in T-ALL.

View Article and Find Full Text PDF

Neonatal inflammatory diseases are associated with severe morbidity, but the inflammatory factors underlying them and their potential effector mechanisms are poorly defined. Here we show that necrotizing enterocolitis in neonate mice is accompanied by elevation of IL-23 and IL-22 and decreased production of pancreatic enzymes. These phenotypes are mirrored in neonate mice overexpressing IL-23 in CX3CR1 myeloid cells or in keratinocytes.

View Article and Find Full Text PDF

Pediatric T cell acute lymphoblastic leukemia (T-ALL) cells frequently contain mutations in the interleukin-7 (IL-7) receptor pathway or respond to IL-7 itself. To target the IL-7 receptor on T-ALL cells, murine monoclonal antibodies (MAbs) were developed against the human IL-7Rα chain and chimerized with human IgG1 constant regions. Crystal structures demonstrate that the two MAbs bound different IL-7Rα epitopes.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death globally. The lack of effective treatments results from an incomplete understanding of the underlying mechanisms driving COPD pathogenesis.Interleukin (IL)-22 has been implicated in airway inflammation and is increased in COPD patients.

View Article and Find Full Text PDF
Article Synopsis
  • Study identifies the main T cell subsets involved in immune response during skin infections using a mouse model.
  • Findings show that IL-17 response is primarily driven by γδ T cells, which help recruit neutrophils and produce key proinflammatory cytokines.
  • Vγ6 T cells are highlighted as a significant subset, producing various cytokines, including IL-17A, which indicates their crucial role in fighting skin infections.
View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer for which treatment options often result in incomplete therapeutic efficacy and long-term side-effects. Interleukin 7 (IL-7) and its receptor IL-7Rα promote T-ALL development and mutational activation of IL-7Rα associates with very high risk in relapsed disease. Using combinatorial phage-display libraries and antibody reformatting, we generated a fully human IgG1 monoclonal antibody (named B12) against both wild-type and mutant human IL-7Rα, predicted to form a stable complex with IL-7Rα at a different site from IL-7.

View Article and Find Full Text PDF

Neutrophils are a vital component of immune protection, yet in cancer they may promote tumour progression, partly by generating reactive oxygen species (ROS) that disrupts lymphocyte functions. Metabolically, neutrophils are often discounted as purely glycolytic. Here we show that immature, c-Kit neutrophils subsets can engage in oxidative mitochondrial metabolism.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) describes chronic relapsing remitting inflammation of the gastrointestinal tract including ulcerative colitis and Crohn's disease. The prevalence of IBD is rising across the globe. Despite a growing therapeutic arsenal, current medical treatments are not universally effective, do not induce lasting remission in all, or are accompanied by short- and long-term adverse effects.

View Article and Find Full Text PDF

The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine's diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Current chemotherapy is quite toxic in growing children and more directed therapeutics are being sought. The IL-7R pathway is a major driver of ALL and here we evaluate two drugs directed to that pathway using a model of T cell ALL.

View Article and Find Full Text PDF