Publications by authors named "Scott Dindot"

Gene therapies are being developed for several central nervous system (CNS) disorders. These therapies are primarily administered to the CNS via the cerebrospinal fluid (CSF), as the blood-brain barrier prevents the transport of large molecules to the brain. Currently, intrathecal injection is the most commonly used route of administration over cisterna magna injections in the clinic for gaining access to the CSF.

View Article and Find Full Text PDF

Angelman syndrome (AS), an early-onset neurodevelopmental disorder characterized by abnormal gait, intellectual disabilities, and seizures, occurs when the maternal allele of the UBE3A gene is disrupted, since the paternal allele is silenced in neurons by the UBE3A antisense (UBE3A-AS) transcript. Given the importance of early treatment, we hypothesized that prenatal delivery of an antisense oligonucleotide (ASO) would downregulate the murine Ube3a-AS, resulting in increased UBE3A protein and functional rescue. Using a mouse model with a Ube3a-YFP allele that reports on-target ASO activity, we found that in utero, intracranial (IC) injection of the ASO resulted in dose-dependent activation of paternal Ube3a, with broad biodistribution.

View Article and Find Full Text PDF

Angelman syndrome is a devastating neurogenetic disorder for which there is currently no effective treatment. It is caused by mutations or epimutations affecting the expression or function of the maternally inherited allele of the ubiquitin-protein ligase E3A () gene. The paternal allele is imprinted in neurons of the central nervous system (CNS) by the antisense () transcript, which represents the distal end of the small nucleolar host gene 14 () transcription unit.

View Article and Find Full Text PDF

A large subset of patients with Angelman syndrome (AS) suffer from concurrent gastrointestinal (GI) issues, including constipation, poor feeding, and reflux. AS is caused by the loss of ubiquitin ligase E3A () gene expression in the brain. Clinical features of AS, which include developmental delays, intellectual disability, microcephaly, and seizures, are primarily due to the deficient expression or function of the maternally inherited allele.

View Article and Find Full Text PDF

Canine multiple system degeneration (CMSD) is a progressive hereditary neurodegenerative disorder commonly characterized by neuronal degeneration and loss in the cerebellum, olivary nuclei, substantia nigra, and caudate nuclei. In this article, we describe 3 cases of CMSD in Ibizan hounds. All patients exhibited marked cerebellar ataxia and had cerebellar atrophy on magnetic resonance imaging.

View Article and Find Full Text PDF

Angelman syndrome (AS) is a neurodevelopmental disorder with unique behavioral phenotypes, seizures, and distinctive electroencephalographic (EEG) patterns. Recent studies identified motor, social communication, and learning and memory deficits in a CRISPR engineered rat model with a complete maternal deletion of the gene. It is unknown whether this model recapitulates other aspects of the clinical disorder.

View Article and Find Full Text PDF

Cerebellar dysfunction has been demonstrated in autism spectrum disorders (ASDs); however, the circuits underlying cerebellar contributions to ASD-relevant behaviors remain unknown. In this study, we demonstrated functional connectivity between the cerebellum and the medial prefrontal cortex (mPFC) in mice; showed that the mPFC mediates cerebellum-regulated social and repetitive/inflexible behaviors; and showed disruptions in connectivity between these regions in multiple mouse models of ASD-linked genes and in individuals with ASD. We delineated a circuit from cerebellar cortical areas Right crus 1 (Rcrus1) and posterior vermis through the cerebellar nuclei and ventromedial thalamus and culminating in the mPFC.

View Article and Find Full Text PDF

Synthetic molecules that mimic the function of natural enzymes or molecules have untapped potential for use in the next generation of drugs. Cyclic compounds that contain aromatic rings are macrocyclic cyclophanes, and when they coordinate iron ions are of particular interest due to their antioxidant and biomimetic properties. However, little is known about the molecular responses at the cellular level.

View Article and Find Full Text PDF

Angelman syndrome (AS) is a rare genetic disorder characterized by severe intellectual disability, seizures, lack of speech, and ataxia. The gene responsible for AS was identified as Ube3a and it encodes for E6AP, an E3 ubiquitin ligase. Currently, there is very little known about E6AP's mechanism of action in vivo or how the lack of this protein in neurons may contribute to the AS phenotype.

View Article and Find Full Text PDF

Neonates of all species, including foals, are highly susceptible to infection, and neutrophils play a crucial role in innate immunity to infection. Evidence exists that neutrophils of neonatal foals are functionally deficient during the first weeks of life, including expression of cytokine genes such as IFNG. We hypothesized that postnatal epigenetic changes were likely to regulate the observed age-related changes in foal neutrophils.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is a genetic disease that occurs in humans and animals. Individuals with OI exhibit signs of extreme bone fragility and osteopenia with frequent fractures and perinatal lethality in severe cases. In this study, we report the clinical diagnosis of OI in a dog and the use of targeted next-generation sequencing to identify a candidate autosomal dominant mutation in the COL1A2 gene.

View Article and Find Full Text PDF

Maternally derived copy number gains of human chromosome 15q11.2-q13.3 (Dup15q syndrome or Dup15q) cause intellectual disability, epilepsy, developmental delay, hypotonia, speech impairments, and minor dysmorphic features.

View Article and Find Full Text PDF

Background: The ubiquitin protein E3A ligase gene () gene is imprinted with maternal-specific expression in neurons and biallelically expressed in all other cell types. Both loss-of-function and gain-of-function mutations affecting the dosage of UBE3A are associated with several neurodevelopmental syndromes and psychological conditions, suggesting that UBE3A is dosage-sensitive in the brain. The observation that loss of imprinting increases the dosage of UBE3A in brain further suggests that inactivation of the paternal allele evolved as a dosage-regulating mechanism.

View Article and Find Full Text PDF

High rates of body weight gain during the juvenile period appear to program molecular events within the hypothalamus, leading to advancement of puberty. Methylation of DNA, an epigenetic mechanism that controls gene expression, is associated with metabolic programming events and is proposed to play a role in the pubertal process. In this study, DNA methylation was assessed in genomic DNA obtained from the arcuate nucleus (ARC) of juvenile heifers fed to gain body weight at low (0.

View Article and Find Full Text PDF

Background: Rhodococcus equi (R. equi) is an intracellular bacterium that affects young foals and immuno-compromised individuals causing severe pneumonia. Currently, the genetic mechanisms that confer susceptibility and/or resistance to R.

View Article and Find Full Text PDF

In animal models, middle-aged females sustain greater ischemia-induced infarction as compared to adult females. This age difference in infarct severity is associated with reduced functional capacity of astrocytes, a critical neural support cell. The impaired response of astrocytes following stroke in middle-aged females may be related to epigenetic alterations, including histone acetylation or methylation.

View Article and Find Full Text PDF

We present a new transcriptome assembly of the Pacific whiteleg shrimp (Litopenaeus vannamei), the species most farmed for human consumption. Its functional annotation, a substantial improvement over previous ones, is provided freely. RNA-Seq with Illumina HiSeq technology was used to analyze samples extracted from shrimp abdominal muscle, hepatopancreas, gills and pleopods.

View Article and Find Full Text PDF

Pneumonia caused by Rhodococcus equi is a common cause of disease and death in foals. Although agent and environmental factors contribute to the incidence of this disease, the genetic factors influencing the clinical outcomes of R. equi pneumonia are ill-defined.

View Article and Find Full Text PDF

Copy number variants (CNVs) represent a substantial source of genetic variation in mammals. However, the occurrence of CNVs in horses and their subsequent impact on phenotypic variation is unknown. We performed a study to identify CNVs in 16 horses representing 15 distinct breeds (Equus caballus) and an individual gray donkey (Equus asinus) using a whole-exome tiling array and the array comparative genomic hybridization methodology.

View Article and Find Full Text PDF

Background: The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing.

Results: Using massively parallel paired-end sequencing, we generated 59.

View Article and Find Full Text PDF

Significance: Epidemiological and animal studies have demonstrated a close link between maternal nutrition and chronic metabolic disease in children and adults. Compelling experimental results also indicate that adverse effects of intrauterine growth restriction on offspring can be carried forward to subsequent generations through covalent modifications of DNA and core histones.

Recent Advances: DNA methylation is catalyzed by S-adenosylmethionine-dependent DNA methyltransferases.

View Article and Find Full Text PDF

Helper-dependent adenoviral (HDAd) vectors are devoid of all viral genes and result in long-term transgene expression in the absence of chronic toxicity. Because of their ability to infect post-mitotic cells, including cells of the central nervous system, HDAd vectors are particularly attractive for brain-directed gene therapy. In this study, we show that intrathecal injection of HDAd results in extensive transduction of ependymal cells and sustained expression of the transgene up to 1 year post-administration.

View Article and Find Full Text PDF

Genomic imprinting arises from allele-specific epigenetic modifications that are established during gametogenesis and that are maintained throughout somatic development. These parental-specific modifications include DNA methylation and post-translational modifications to histones, which create allele-specific active and repressive domains at imprinted regions. Through the use of a high-density genomic tiling array, we generated DNA and histone methylation profiles at 11 imprinted gene clusters in the mouse from DNA and from chromatin immunoprecipitated from sperm, heart, and cerebellum.

View Article and Find Full Text PDF

Loss of function of the maternally inherited allele for the UBE3A ubiquitin ligase gene causes Angelman syndrome (AS), which is characterized by severe neurological impairment and motor dysfunction. In addition, UBE3A lies within chromosome 15q11-q13 region, where maternal, but not paternal, duplications cause autism. The UBE3A gene product, E6-AP, has been shown to function both as an E3 ligase in the ubiquitin proteasome pathway and as a transcriptional coactivator.

View Article and Find Full Text PDF

Genomic imprinting is theorized to exist in all placental mammals and some marsupials; however, extensive comparative analysis of animals aside from humans and mice remains incomplete. Here we report conservation of genomic imprinting in the bovine at the X chromosome inactivation-specific transcript (XIST), insulin-like growth factor 2 (IGF2), and gene trap locus 2 (GTL2) loci. Coding single nucleotide polymorphisms (SNPs) between Bos gaurus and Bos taurus were detected at the XIST, IGF2, and GTL2 loci, which have previously been identified as imprinted in either humans, mice, or sheep.

View Article and Find Full Text PDF