Publications by authors named "Scott Diddams"

The search for Earth-like exoplanets with the Doppler radial velocity (RV) technique is an extremely challenging and multifaceted precision spectroscopy problem. Currently, one of the limiting instrumental factors in reaching the required long-term 10 level of radial velocity precision is the defect-driven subpixel quantum efficiency (QE) variations in the large-format detector arrays used by precision echelle spectrographs. Tunable frequency comb calibration sources that can fully map the point spread function (PSF) across a spectrograph's entire bandwidth are necessary for quantifying and correcting these detector artifacts.

View Article and Find Full Text PDF

Vacuum-gap Fabry-Perot cavities are indispensable for the realization of frequency-stable lasers, with applications across a diverse range of scientific and industrial pursuits. However, making these cavity-based laser stabilization systems compact, portable, and rugged enough for use outside of controlled laboratory conditions has proven difficult. Here, we present a fiber-coupled 1396 nm laser stabilization system requiring no free-space optics or alignment, built for a portable strontium optical lattice clock.

View Article and Find Full Text PDF

Dual-comb spectroscopy in the ultraviolet (UV) and visible would enable broad bandwidth electronic spectroscopy with unprecedented frequency resolution. However, there are significant challenges in generation, detection, and processing of dual-comb data that have restricted its progress in this spectral region. In this work, we leverage robust 1550 nm few-cycle pulses to generate frequency combs in the UV-visible.

View Article and Find Full Text PDF

Numerous modern technologies are reliant on the low-phase noise and exquisite timing stability of microwave signals. Substantial progress has been made in the field of microwave photonics, whereby low-noise microwave signals are generated by the down-conversion of ultrastable optical references using a frequency comb. Such systems, however, are constructed with bulk or fibre optics and are difficult to further reduce in size and power consumption.

View Article and Find Full Text PDF
Article Synopsis
  • The study discovered a Neptune-mass exoplanet orbiting the low-mass star LHS 3154, which is significantly less massive than the Sun.
  • The exoplanet has a short orbital period of 3.7 days and a minimum mass of 13.2 Earth masses, challenging existing theories of planet formation.
  • Simulations indicate that the high mass ratio between the planet and its star is unexpected, suggesting that close-in Neptune-mass planets would require much more dust in the protoplanetary disk than typically found around such low-mass stars.
View Article and Find Full Text PDF

We report precision atmospheric spectroscopy of CO using a laser heterodyne radiometer (LHR) calibrated with an optical frequency comb. Using the comb calibrated LHR, we record spectra of atmospheric CO near 1572.33 nm with a spectral resolution of 200 MHz, using sunlight as a light source.

View Article and Find Full Text PDF

We develop and demonstrate a compact (less than 6 mL) portable Fabry-Pérot optical reference cavity. A laser locked to the cavity is thermal noise limited at 2 × 10 fractional frequency stability. Broadband feedback control with an electro-optic modulator enables near thermal-noise-limited phase noise performance from 1 Hz to 10 kHz offset frequencies.

View Article and Find Full Text PDF

Lasers with hertz linewidths at time scales of seconds are critical for metrology, timekeeping, and manipulation of quantum systems. Such frequency stability relies on bulk-optic lasers and reference cavities, where increased size is leveraged to reduce noise but with the trade-off of cost, hand assembly, and limited applications. Alternatively, planar waveguide-based lasers enjoy complementary metal-oxide semiconductor scalability yet are fundamentally limited from achieving hertz linewidths by stochastic noise and thermal sensitivity.

View Article and Find Full Text PDF

Mid-infrared (MIR) spectrometers are invaluable tools for molecular fingerprinting and hyper-spectral imaging. Among the available spectroscopic approaches, GHz MIR dual-comb absorption spectrometers have the potential to simultaneously combine the high-speed, high spectral resolution, and broad optical bandwidth needed to accurately study complex, transient events in chemistry, combustion, and microscopy. However, such a spectrometer has not yet been demonstrated due to the lack of GHz MIR frequency combs with broad and full spectral coverage.

View Article and Find Full Text PDF

We describe a high-performance, compact optical frequency standard based on a microfabricated Rb vapor cell and a low-noise, external cavity diode laser operating on the Rb two-photon transition at 778 nm. The optical standard achieves an instability of 1.8×10 for times less than 100 s and a flicker noise floor of 1×10 out to 6000 s.

View Article and Find Full Text PDF

The comblike spectrum of a white light-illuminated Fabry-Pérot etalon can serve as a cost-effective and stable reference for precise Doppler measurements. Understanding the stability of these devices across their broad (hundreds of nanometers) spectral bandwidths is essential to realizing their full potential as Doppler calibrators. However, published descriptions remain limited to small bandwidths or short time spans.

View Article and Find Full Text PDF

Optical frequency combs were introduced around 20 years ago as a laser technology that could synthesize and count the ultrafast rate of the oscillating cycles of light. Functioning in a manner analogous to a clockwork of gears, the frequency comb phase-coherently upconverts a radio frequency signal by a factor of [Formula: see text] to provide a vast array of evenly spaced optical frequencies, which is the comb for which the device is named. It also divides an optical frequency down to a radio frequency, or translates its phase to any other optical frequency across hundreds of terahertz of bandwidth.

View Article and Find Full Text PDF

We demonstrate mid-infrared (MIR) frequency combs at 10 GHz repetition rate via intra-pulse difference-frequency generation (DFG) in quasi-phase-matched nonlinear media. Few-cycle pump pulses (≲15, 100 pJ) from a near-infrared electro-optic frequency comb are provided via nonlinear soliton-like compression in photonic-chip silicon-nitride waveguides. Subsequent intra-pulse DFG in periodically poled lithium niobate waveguides yields MIR frequency combs in the 3.

View Article and Find Full Text PDF

Optical atomic clocks are poised to redefine the Système International (SI) second, thanks to stability and accuracy more than 100 times better than the current microwave atomic clock standard. However, the best optical clocks have not seen their performance transferred to the electronic domain, where radar, navigation, communications, and fundamental research rely on less stable microwave sources. By comparing two independent optical-to-electronic signal generators, we demonstrate a 10-gigahertz microwave signal with phase that exactly tracks that of the optical clock phase from which it is derived, yielding an absolute fractional frequency instability of 1 × 10 in the electronic domain.

View Article and Find Full Text PDF

We report an all-fiber approach to generating sub-2-cycle pulses at 2 µm and a corresponding octave-spanning optical frequency comb. Our configuration leverages mature erbium:fiber laser technology at 1.5 µm to provide a seed pulse for a thulium-doped fiber amplifier that outputs 330 mW average power at a 100 MHz repetition rate.

View Article and Find Full Text PDF

The mid-infrared atmospheric window of 3-5.5  μm holds valuable information regarding molecular composition and function for fundamental and applied spectroscopy. Using a robust, mode-locked fiber-laser source of <11  fs pulses in the near infrared, we explore quadratic (χ^{(2)}) nonlinear optical processes leading to frequency comb generation across this entire mid-infrared atmospheric window.

View Article and Find Full Text PDF

Microresonator-based soliton frequency combs, microcombs, have recently emerged to offer low-noise, photonic-chip sources for applications, spanning from timekeeping to optical-frequency synthesis and ranging. Broad optical bandwidth, brightness, coherence, and frequency stability have made frequency combs important to directly probe atoms and molecules, especially in trace gas detection, multiphoton light-atom interactions, and spectroscopy in the extreme ultraviolet. Here, we explore direct microcomb atomic spectroscopy, using a cascaded, two-photon 1529-nm atomic transition in a rubidium micromachined cell.

View Article and Find Full Text PDF

We report on the development of a high-power mid-infrared frequency comb with 100 MHz repetition rate and 100 fs pulse duration. Difference frequency generation is realized between two branches derived from an Er:fiber comb, amplified separately in Yb:fiber and Er:fiber amplifiers. Average powers of 6.

View Article and Find Full Text PDF

Probing matter with light in the mid-infrared provides unique insight into molecular composition, structure, and function with high sensitivity. However, laser spectroscopy in this spectral region lacks the broadband or tunable light sources and efficient detectors available in the visible or near-infrared. We overcome these challenges with an approach that unites a compact source of phase-stable, single-cycle, mid-infrared pulses with room temperature electric field-resolved detection at video rates.

View Article and Find Full Text PDF

Orbiting planets induce a weak radial velocity (RV) shift in the host star that provides a powerful method of planet detection. Importantly, the RV technique provides information about the exoplanet mass, which is unavailable with the complementary technique of transit photometry. However, RV detection of an Earth-like planet in the 'habitable zone' requires extreme spectroscopic precision that is only possible using a laser frequency comb (LFC).

View Article and Find Full Text PDF

A time scale is a procedure for accurately and continuously marking the passage of time. It is exemplified by Coordinated Universal Time (UTC) and provides the backbone for critical navigation tools such as the Global Positioning System. Present time scales employ microwave atomic clocks, whose attributes can be combined and averaged in a manner such that the composite is more stable, accurate, and reliable than the output of any individual clock.

View Article and Find Full Text PDF

Light sources that are ultrafast and ultrastable enable applications like timing with subfemtosecond precision and control of quantum and classical systems. Mode-locked lasers have often given access to this regime, by using their high pulse energies. We demonstrate an adaptable method for ultrastable control of low-energy femtosecond pulses based on common electro-optic modulation of a continuous-wave laser light source.

View Article and Find Full Text PDF

We demonstrate wide-band frequency down-conversion to the mid-infrared (MIR) using four-wave mixing (FWM) of near-infrared (NIR) femtosecond-duration pulses from an Er:fiber laser, corresponding to 100 THz spectral translation. Photonic-chip-based silicon nitride waveguides provide the FWM medium. Engineered dispersion in the nanophotonic geometry and the wide transparency range of silicon nitride enable large-detuning FWM phase-matching and results in tunable MIR from 2.

View Article and Find Full Text PDF

We explore the dynamical response of dissipative Kerr solitons to changes in pump power and detuning and show how thermal and nonlinear processes couple these parameters to the frequency-comb degrees of freedom. Our experiments are enabled by a Pound-Drever-Hall (PDH) stabilization approach that provides on-demand, radio-frequency control of the frequency comb. PDH locking not only guides Kerr-soliton formation from a cold microresonator but opens a path to decouple the repetition and carrier-envelope-offset frequencies.

View Article and Find Full Text PDF

We experimentally demonstrate a versatile technique for performing dual-comb interferometry using a single frequency comb. By rapid switching of the repetition rate, the output pulse train can be delayed and heterodyned with itself to produce interferograms. The full speed and resolution of standard dual-comb interferometry is preserved while simultaneously offering a significant experimental simplification and cost savings.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioni1evg9s5g3ar0s9l93cfm9q19oad4f3d): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once