High-pressure synthesis in the diamond anvil cell suffers from the lack of a general approach for the control of precursor stoichiometry and homogeneity. Here, we present results from a new method we have developed that uses magnetron cosputtering to prepare stoichiometrically precise and atomically mixed amorphous films of Cr:C. Laser-heated diamond anvil cell experiments carried out on a flake of this sample at pressures between 13.
View Article and Find Full Text PDFTransition metal carbides find widespread use throughout industry due to their high strength and resilience under extreme conditions. However, they remain largely limited to compounds formed from the early d-block elements, since the mid-to-late transition metals do not form thermodynamically stable carbides. We report here the high-pressure bulk synthesis of large single crystals of a novel metastable manganese carbide compound, MnC (P6/mmc), which adopts the anti-NiAs-type structure with significant substoichiometry at the carbon sites.
View Article and Find Full Text PDFThe delafossites are a class of layered metal oxides that are notable for being able to exhibit optical transparency alongside an in-plane electrical conductivity, making them promising platforms for the development of transparent conductive oxides. Pressure-induced polymorphism offers a direct method for altering the electrical and optical properties in this class, and although the copper delafossites have been studied extensively under pressure, the silver delafossites remain only partially studied. We report two new high-pressure polymorphs of silver ferrite delafossite, AgFeO, that are stabilized above ∼6 and ∼14 GPa.
View Article and Find Full Text PDF