Loss of dopaminergic neurons in Parkinson's disease (PD) is preceded by loss of synaptic dopamine (DA) and accumulation of proteinaceous aggregates. Linking these deficits is critical to restoring DA signaling in PD. Using murine and human pluripotent stem cell (hPSC) models of PD coupled with human postmortem tissue, we show that accumulation of α-syn micro-aggregates impairs metabolic flux through the pentose phosphate pathway (PPP).
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
June 2024
Nitric oxide can covalently modify cysteine thiols on target proteins to alter that protein's function in a process called S-nitrosylation (SNO). S-nitrosylation of synaptic proteins plays an integral part in neurotransmission. Here we review the function of the SNO-proteome at the synapse and whether clusters of SNO-modification may predict synaptic dysfunction associated with disease.
View Article and Find Full Text PDFParkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD.
View Article and Find Full Text PDFChild Abuse Negl
December 2023
Background: A growing body of research has focused on the relationships of policies and other macro factors and child welfare outcomes. However, to date, few studies have examined state child welfare policies and reunification, despite reunification being the priority case goal among children in foster care.
Objective: This study examined the relationship between state child welfare policies and other macro factors and reunification, while controlling for child factors.
Cortical synucleinopathies, including dementia with Lewy bodies and Parkinson's disease dementia, collectively known as Lewy body dementia, are characterized by the aberrant aggregation of misfolded α-synuclein (α-syn) protein into large inclusions in cortical tissue, leading to impairments in proteostasis and synaptic connectivity and eventually resulting in neurodegeneration. Here, we show that male and female rat cortical neurons exposed to exogenous α-syn preformed fibrils accumulate large, detergent-insoluble, PS129-labeled deposits at synaptic terminals. Live-cell imaging of calcium dynamics coupled with assessment of network activity reveals that aberrant intracellular accumulation of α-syn inhibits synaptic response to glutamate through NMDARs, although deficits manifest slowly over a 7 d period.
View Article and Find Full Text PDFParkinson's Disease (PD) is a neurodegenerative disorder characterized, in part, by the loss of dopaminergic neurons within the nigral-striatal pathway. Multiple lines of evidence support a role for reactive nitrogen species (RNS) in degeneration of this pathway, specifically nitric oxide (NO). This review will focus on how RNS leads to loss of dopaminergic neurons in PD and whether RNS accumulation represents a central signal in the degenerative cascade.
View Article and Find Full Text PDFNeuronal loss in Parkinson's disease (PD) is associated with impaired proteostasis and accumulation of α-syn microaggregates in dopaminergic neurons. These microaggregates promote seeding of α-synuclein (α-syn) pathology between synaptically linked neurons. However, the mechanism by which seeding is initiated is not clear.
View Article and Find Full Text PDFAlpha-synuclein (α-syn) is a small presynaptic protein that is believed to play an important role in the pathogenesis of Parkinson's disease (PD). It localizes to presynaptic terminals where it partitions between a cytosolic soluble and a lipid-bound state. Recent evidence suggests that α-syn can also associate with mitochondrial membranes where it interacts with a unique anionic phospholipid cardiolipin (CL).
View Article and Find Full Text PDFEvidence suggests that n-3 polyunsaturated fatty acids may act as activators of the Nrf2 antioxidant pathway. The antioxidant response, in turn, promotes neuronal differentiation and neurite outgrowth. Nrf2 has recently been suggested to be a cell intrinsic mediator of docosohexanoic acid (DHA) signaling.
View Article and Find Full Text PDFWhile mutations in the gene (α-synuclein [α-syn]) are causal in rare familial forms of Parkinson's disease (PD), the prevalence of α-syn aggregates in the cortices of sporadic disease cases emphasizes the need to understand the link between α-syn accumulation and disease pathogenesis. By employing a combination of human pluripotent stem cells (hPSCs) that harbor the -A53T mutation contrasted against isogenic controls, we evaluated the consequences of α-syn accumulation in human A9-type dopaminergic (DA) neurons (hNs). We show that the early accumulation of α-syn in -A53T hNs results in changes in gene expression consistent with the expression profile of the substantia nigra (SN) from PD patients, analyzed post mortem.
View Article and Find Full Text PDFAlzheimer's disease (AD) and Parkinson's disease (PD) share many commonalities ranging from signaling deficits such as altered cholinergic activity, neurotrophin and insulin signaling to cell stress cascades that result in proteinopathy, mitochondrial dysfunction and neuronal cell death. These pathological processes are not unidirectional, but are intertwined, resulting in a series of feed-forward loops that worsen symptoms and advance disease progression. At the center of these loops is glycogen synthase kinase-3 (GSK-3), a keystone protein involved in many of the multidirectional biological processes that contribute to AD and PD neuropathology.
View Article and Find Full Text PDFNeuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function in dopaminergic (DA) neurons of the substantia nigra pars compacta. An association has been reported between PD onset and exposure to mitochondrial toxins, including the agrochemicals paraquat (PQ), maneb (MB), and rotenone (Rot). Here, with the use of a patient-derived stem cell model of PD, allowing comparison of DA neurons harboring a mutation in the α-synuclein (α-syn) gene ( SNCA-A53T) against isogenic, mutation-corrected controls, we describe a novel mechanism whereby NO, generated from SNCA-A53T mutant neurons exposed to Rot or PQ/MB, inhibits anterograde mitochondrial transport through nitration of α-tubulin (α-Tub).
View Article and Find Full Text PDFNeuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function and impaired proteostasis. Identifying the mechanisms that link these pathologies is critical to furthering our understanding of PD pathogenesis. Using human pluripotent stem cells (hPSCs) that allow comparison of cells expressing mutant SNCA (encoding α-synuclein (α-syn)) with isogenic controls, or SNCA-transgenic mice, we show that SNCA-mutant neurons display fragmented mitochondria and accumulate α-syn deposits that cluster to mitochondrial membranes in response to exposure of cardiolipin on the mitochondrial surface.
View Article and Find Full Text PDFTranscription factor MEF2C regulates multiple genes linked to autism spectrum disorder (ASD), and human MEF2C haploinsufficiency results in ASD, intellectual disability, and epilepsy. However, molecular mechanisms underlying MEF2C haploinsufficiency syndrome remain poorly understood. Here we report that Mef2c (Mef2c-het) mice exhibit behavioral deficits resembling those of human patients.
View Article and Find Full Text PDFEarly-onset dystonia is associated with the deletion of one of a pair of glutamic acid residues (c.904_906delGAG/c.907_909delGAG; p.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). An association has been reported between PD and exposure to mitochondrial toxins, including environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived stem cell model of PD allowing comparison of A53T α-synuclein (α-syn) mutant cells and isogenic mutation-corrected controls, we identify mitochondrial toxin-induced perturbations in A53T α-syn A9 DA neurons (hNs).
View Article and Find Full Text PDFThe synaptic toxicity of soluble amyloid-β (Aβ) oligomers plays a critical role in the pathophysiology of Alzheimer's disease (AD). Here we report that overexpressed α1-takusan, which we previously identified as a protein that enhances synaptic activity via interaction with PSD-95, mitigates oligomeric Aβ-induced synaptic loss. In contrast, takusan knockdown results in enhanced synaptic damage.
View Article and Find Full Text PDFAfter transplantation, individual stem cell-derived neurons can functionally integrate into the host CNS; however, evidence that neurons derived from transplanted human embryonic stem cells (hESCs) can drive endogenous neuronal network activity in CNS tissue is still lacking. Here, using multielectrode array recordings, we report activation of high-frequency oscillations in the β and γ ranges (10-100 Hz) in the host hippocampal network via targeted optogenetic stimulation of transplanted hESC-derived neurons.
View Article and Find Full Text PDFCrosslinking proteins maintain organelle structure and facilitate their function through the crosslinking of cytoskeletal elements. We recently found an interaction between the giant crosslinking protein dystonin-a2 and the microtubule-associated protein-1B (MAP1B), occurring in the centrosomal region of the cell. In addition, we showed that this interaction is necessary to maintain microtubule acetylation.
View Article and Find Full Text PDFMost cases of early onset DYT1 dystonia in humans are caused by a GAG deletion in the TOR1A gene leading to loss of a glutamic acid (ΔE) in the torsinA protein, which underlies a movement disorder associated with neuronal dysfunction without apparent neurodegeneration. Mutation/deletion of the gene (Dst) encoding dystonin in mice results in a dystonic movement disorder termed dystonia musculorum, which resembles aspects of dystonia in humans. While torsinA and dystonin proteins do not share modular domain architecture, they participate in a similar function by modulating a structural link between the nuclear envelope and the cytoskeleton in neuronal cells.
View Article and Find Full Text PDFLoss of function of dystonin cytoskeletal linker proteins causes neurodegeneration in dystonia musculorum (dt) mutant mice. Although much investigation has focused on understanding dt pathology, the diverse cellular functions of dystonin isoforms remain poorly characterized. In this paper, we highlight novel functions of the dystonin-a2 isoform in mediating microtubule (MT) stability, Golgi organization, and flux through the secretory pathway.
View Article and Find Full Text PDFDystonin/Bpag1 is a cytoskeletal linker protein whose loss of function in dystonia musculorum (dt) mice results in hereditary sensory neuropathy. Although loss of expression of neuronal dystonin isoforms (dystonin-a1/dystonin-a2) is sufficient to cause dt pathogenesis, the diverging function of each isoform and what pathological mechanisms are activated upon their loss remains unclear. Here we show that dt(27) mice manifest ultrastructural defects at the endoplasmic reticulum (ER) in sensory neurons corresponding to in vivo induction of ER stress proteins.
View Article and Find Full Text PDFIdentifying the molecular mechanisms underlying OL development is not only critical to furthering our knowledge of OL biology, but also has implications for understanding the pathogenesis of demyelinating diseases such as Multiple Sclerosis (MS). Cellular development is commonly studied with primary cell culture models. Primary cell culture facilitates the evaluation of a given cell type by providing a controlled environment, free of the extraneous variables that are present in vivo.
View Article and Find Full Text PDFDystonia musculorum (dt) is a mouse inherited sensory neuropathy caused by mutations in the dystonin gene. While the primary pathology lies in the sensory neurons of dt mice, the overt movement disorder suggests motor neurons may also be affected. Here, we report on the contribution of motor neurons to the pathology in dt(27J) mice.
View Article and Find Full Text PDF