Iodine is an essential micronutrient for elasmobranchs in order to prevent goiter. Preventing goiter requires bioavailable iodide: either oral iodide or maintaining adequate aquarium water iodide concentrations. The objective of this study was to determine how oral and water supplementation affected iodine (I) and iodide (I) concentrations in artificial seawater aquaria housing captive white-spotted bamboo sharks ( Chiloscyllium plagiosum).
View Article and Find Full Text PDFCoupling infrared (IR) spectroscopy to microfluidic devices provides a powerful tool for characterizing complex chemical and biochemical reactions. Examples of microfluidic devices coupled with infrared spectroscopy have been limited, however, largely due to the difficulties associated with fabricating systems in common infrared transparent materials like CaF. Recent reports have shown that polydimethylsiloxane (PDMS) can be used as an IR transparent substrate when fabricated with thin layers.
View Article and Find Full Text PDFGold nanoparticles in radiofrequency (RF) fields have been observed to heat. There is some debate over the mechanism of heating. Au(SR) in RF is studied for the mechanistic insights obtainable from precise synthetic control over exact charge, size, and spin for this nanoparticle.
View Article and Find Full Text PDFMeasurement variance is a crucial aspect of quantitative chemical analysis. Variance directly affects important analytical figures of merit, including detection limit, quantitation limit, and confidence intervals. Most reported analyses for emerging analytical techniques implicitly assume constant variance (homoskedasticity) by using unweighted regression calibrations.
View Article and Find Full Text PDFA simple fabrication method for generating infrared (IR) transparent microfluidic devices using etched CaF2 is demonstrated. To etch microfluidic channels, a poly(dimethylsiloxane) (PDMS) microfluidic device was reversibly sealed on a CaF2 plate and acid was pumped through the channel network to perform anisotropic etching of the underlying CaF2 surface. To complete the CaF2 microfluidic device, another CaF2 plate was sealed over the etched channel using a 700 nm thick layer of PDMS adhesive.
View Article and Find Full Text PDFExposure to metal-containing aerosols has been linked with adverse health outcomes for almost every organ in the human body. Commercially available techniques for quantifying particulate metals are time-intensive, laborious, and expensive; often sample analysis exceeds $100. We report a simple technique, based upon a distance-based detection motif, for quantifying metal concentrations of Ni, Cu, and Fe in airborne particulate matter using microfluidic paper-based analytical devices.
View Article and Find Full Text PDFThe common selenium oxoanions selenite (SeO3(2-)) and selenate (SeO4(2-)) are toxic at intake levels slightly below 1 mg day(-1). These anions are currently monitored by a variety of traditional analytical techniques that are time-consuming, expensive, require large sample volumes, and/or lack portability. To address the need for a fast and inexpensive analysis of selenium oxoanions, we present the first microchip capillary zone electrophoresis (MCE) separation targeting these species in the presence of chloride, sulfate, nitrate, nitrite, chlorate, sulfamate, methanesulfonate, and fluoride, which can be simultaneously monitored.
View Article and Find Full Text PDFThe use of surfactant mixtures to affect both EOF and separation selectivity in electrophoresis with PDMS substrates is reported, and capacitively coupled contactless conductivity detection is introduced for EOF measurement on PDMS microchips. First, the EOF was measured for two nonionic surfactants (Tween 20 and Triton X-100), mixed ionic/nonionic surfactant systems (SDS/Tween 20 and SDS/Triton X-100), and finally for the first time, mixed zwitterionic/nonionic surfactant systems (TDAPS/Tween 20 and TDAPS/Triton X-100). EOF for the nonionic surfactants decreased with increasing surfactant concentration.
View Article and Find Full Text PDFThe use of mixtures of ionic and zwitterionic surfactants in poly(dimethylsiloxane) (PDMS) microchips is reported. The effect of surfactant concentration on electroosmotic flow (EOF) was studied for a single anionic surfactant (sodium dodecyl sulfate, SDS), a single zwitterionic surfactant (N-tetradecylammonium-N,N-dimethyl-3-ammonio-1-propanesulfonate, TDAPS), and a mixed SDS/TDAPS surfactant system. SDS increased the EOF as reported previously while TDAPS showed an initial increase in EOF followed by a reduction at higher concentrations.
View Article and Find Full Text PDFA microchip capillary electrophoresis (MCE) system has been developed for the determination of perchlorate in drinking water. The United States Environmental Protection Agency (USEPA) recently proposed a health advisory limit for perchlorate in drinking water of 15 parts per billion (ppb), a level requiring large, sophisticated instrumentation, such as ion chromatography coupled with mass spectrometry (IC-MS), for detection. An inexpensive, portable system is desired for routine online monitoring applications of perchlorate in drinking water.
View Article and Find Full Text PDFSemicontinuous monitoring of aerosol chemical composition has continually increased in demand because of the high spatial and temporal variability of atmospheric particles and the effects these aerosols have on human health and the environment. To address this demand, we describe the preliminary development of a semicontinuous aerosol composition analyzer consisting of a growth tube particle collector coupled to a microfluidic device for chemical analysis. The growth tube enlarges particles through water condensation in a laminar flow, permitting inertial collection into the microchip sample reservoir.
View Article and Find Full Text PDFA sensitive and selective separation of common anionic constituents of atmospheric aerosols, sulfate, nitrate, chloride, and oxalate, is presented using microchip electrophoresis. The optimized separation is achieved in under 1 min and at low background electrolyte ionic strength (2.9 mM) by combining a metal-binding electrolyte anion (17 mM picolinic acid), a sulfate-binding electrolyte cation (19 mM HEPBS), a zwitterionic surfactant with affinity towards weakly solvated anions (19 mM N-tetradecyl,N,N-dimethyl-3-ammonio-1-propansulfonate), and operation in counter-electroosmotic flow (EOF) mode.
View Article and Find Full Text PDFA new approach for improving the compatibility between contact conductivity detection and microchip electrophoresis was developed. Contact conductivity has traditionally been limited by the interaction of the separation voltage with the detection electrodes because the applied field creates a voltage difference between the electrodes, leading to unwanted electrochemical reactions. To minimize the voltage drop between the conductivity electrodes and therefore improve compatibility, a novel bubble cell detection zone was designed.
View Article and Find Full Text PDFMicrofluidic devices have gained significant scientific interest due to the potential to develop portable, inexpensive analytical tools capable of quick analyses with low sample consumption. These qualities make microfluidic devices attractive for point-of-use measurements where traditional techniques have limited functionality. Many samples of interest in biological and environmental analysis, however, contain insoluble particles that can block microchannels, and manual filtration prior to analysis is not desirable for point-of-use applications.
View Article and Find Full Text PDFThe ability to monitor and quantify anionic components of aerosols is important for developing a better fundamental understanding of temporal and spatial variations in aerosol composition. Of the many methods that can be used to detect anions, capillary electrophoresis is among the most attractive ones because of its high separation efficiency, high resolving power for ionic compounds, and ability to be miniaturized for in-field monitoring. Here we present a method to baseline resolve common aerosol components nitrate, sulfate, chloride, and over two dozen organic acids in a single separation.
View Article and Find Full Text PDFThe metal ions Cu(II), Fe(II), and Cr(III) were allowed to react with H(2)O(2) in the presence of either the mononucleoside 2'-deoxyguanosine (dG) or the mononucleotide 2'-deoxyguanosine-5'-monophosphate (dGMP). The percentage of reacted dG or dGMP that formed the oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OH-dG) was monitored. Oxidative damage from reactions involving Cu(II) appear dependent on an interaction between copper and N7 on the guanine base.
View Article and Find Full Text PDF