Publications by authors named "Scott D Mills"

Deciphering the mode of action (MOA) of new antibiotics discovered through phenotypic screening is of increasing importance. Metabolomics offers a potentially rapid and cost-effective means of identifying modes of action of drugs whose effects are mediated through changes in metabolism. Metabolomics techniques also collect data on off-target effects and drug modifications.

View Article and Find Full Text PDF

We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal activity against N. gonorrhoeae, including multidrug-resistant strains and key Gram-positive, fastidious Gram-negative, atypical, and anaerobic bacterial species (Huband, M.

View Article and Find Full Text PDF

Bacterial biosensor strains can be useful tools for the discovery and characterization of antibacterial compounds. A plasmid-based reporter vector containing a transcriptional fusion between the recA promoter and green fluorescence protein gene was introduced into an Escherichia coli ΔtolC strain to create a biosensor strain that selectively senses inhibitors of DNA metabolism via the SOS response. The strain was used to develop a high-throughput assay to identify new inhibitors of DNA metabolism.

View Article and Find Full Text PDF

NAD(+)-dependent DNA ligases (LigA) are essential bacterial enzymes that catalyze phosphodiester bond formation during DNA replication and repair processes. Phosphodiester bond formation proceeds through a 3-step reaction mechanism. In the first step, the LigA adenylation domain interacts with NAD(+) to form a covalent enzyme-AMP complex.

View Article and Find Full Text PDF

Optimization of clearance of adenosine inhibitors of bacterial NAD(+)-dependent DNA ligase is discussed. To reduce Cytochrome P-450-mediated metabolic clearance, many strategies were explored; however, most modifications resulted in compounds with reduced antibacterial activity and/or unchanged total clearance. The alkyl side chains of the 2-cycloalkoxyadenosines were fluorinated, and compounds with moderate antibacterial activity and favorable pharmacokinetic properties in rat and dog were identified.

View Article and Find Full Text PDF

Optimization of adenosine analog inhibitors of bacterial NAD(+)-dependent DNA ligase is discussed. Antibacterial activity against Streptococcus pneumoniae and Staphylococcus aureus was improved by modification of the 2-position substituent on the adenine ring and 3'- and 5'-substituents on the ribose. Compounds with logD values 1.

View Article and Find Full Text PDF

DNA ligases are indispensable enzymes playing a critical role in DNA replication, recombination, and repair in all living organisms. Bacterial NAD+-dependent DNA ligase (LigA) was evaluated for its potential as a broad-spectrum antibacterial target. A novel class of substituted adenosine analogs was discovered by target-based high-throughput screening (HTS), and these compounds were optimized to render them more effective and selective inhibitors of LigA.

View Article and Find Full Text PDF

Effective solutions to antibacterial resistance are among the key unmet medical needs driving the antibacterial industry. A major thrust in a number of companies is the development of agents with new modes of action in order to bypass the increasing emergence of antibacterial resistance. However, few antibacterials marketed in the last 30 years have novel modes of action.

View Article and Find Full Text PDF

A family of benzimidazole derivatives (BI) was shown to possess potent and selective activity against Helicobacter pylori, although the precise cellular target of the BIs is unknown. Spontaneous H. pylori mutants were isolated as resistant to a representative BI (compound A).

View Article and Find Full Text PDF