The fate of lactate after exercise varies between animal groups. In ectothermic vertebrates, lactate is primarily converted to glycogen in the muscle. In mammals, lactate is intramuscularly oxidized or converted to glycogen in the muscle and/or liver.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
July 2021
Chronic electrical stimulation (CES) is a well-documented method for changing mammalian muscle from more fast-twitch to slow-twitch metabolic and contractile profiles. Although both mammalian and insect muscles have many similar anatomical and physiological properties, it is unknown if CES produces similar muscle plasticity changes in insects. To test this idea, we separated Schistocerca americana grasshoppers into two groups (n = 37 to 47): one that was subjected to CES for 180 min each day for five consecutive days and one group that was not.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
August 2018
The physical spaces within which organisms live affect their biology and in many cases can be considered part of their extended phenotype. The nests of social insect societies have a fundamental impact on their ability to function as complex superorganisms. Ants in many species excavate elaborate subterranean nests, but others inhabit relatively small pre-formed cavities within rock crevices and hollow seeds.
View Article and Find Full Text PDFAbdominal pumping in caterpillars has only been documented during molting. Using synchrotron X-ray imaging in conjunction with high-speed flow-through respirometry, we show that Manduca sexta caterpillars cyclically contract their bodies in response to hypoxia, resulting in significant compressions of the tracheal system. Compression of tracheae induced by abdominal pumping drives external gas exchange, as evidenced by the high correlation between CO2 emission peaks and body movements.
View Article and Find Full Text PDFAmong animals, insects have the highest mass-specific metabolic rates; yet, during intermolt development the tracheal respiratory system cannot meet the increased oxygen demand of older stage insects. Using locomotory performance indices, whole body respirometry, and X-ray imaging to visualize the respiratory system, we tested the hypothesis that due to the rigid exoskeleton, an increase in body mass during the intermolt period compresses the air-filled tracheal system, thereby, reducing oxygen delivery capacity in late stage insects. Specifically, we measured air sac ventilation frequency, size, and compressibility in both the abdomen and femur of early, middle, and late stage sixth instar Schistocerca americana grasshoppers.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
October 2011
Intraspecific studies have repeatedly shown that muscle-specific oxidative enzyme activities scale negatively with body mass while muscle-specific glycolytic enzyme activities scale positively. However, most of these studies have not included juveniles. In this study, we examined how citrate synthase (CS, EC 2.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
November 2009
As grasshoppers increase in size during ontogeny, they have mass specifically greater whole body tracheal and tidal volumes and ventilation than predicted by an isometric relationship with body mass and body volume. However, the morphological and physiological bases to this respiratory hypermetry are unknown. In this study, we use synchrotron imaging to demonstrate that tracheal hypermetry in developing grasshoppers (Schistocerca americana) is due to increases in air sacs and tracheae and occurs in all three body segments, providing evidence against the hypothesis that hypermetry is due to gaining flight ability.
View Article and Find Full Text PDFPrevious studies found that selection for endurance running in untrained rats produced distinct high (HCR) and low (LCR) capacity runners. Furthermore, despite weighing 14% less, 7th generation HCR rats achieved the same absolute maximal oxygen consumption (Vo(2max)) as LCR due to muscle adaptations that improved oxygen extraction and use. However, there were no differences in cardiopulmonary function after seven generations of selection.
View Article and Find Full Text PDFWe use a factorial experimental design to test whether rearing at colder temperatures shifts the lower thermal envelope for flight of Drosophila melanogaster Meigen to colder temperatures. D. melanogaster that developed in colder temperatures (15 degrees C) had a significant flight advantage in cold air compared to flies that developed in warmer temperatures (28 degrees C).
View Article and Find Full Text PDFUntrained rats selectively bred for either high (HCR) or low (LCR) treadmill running capacity previously demonstrated divergent physiological traits as early as the seventh generation (G7). We asked whether continued selective breeding to generation 15 (G15) would further increase the divergence in skeletal muscle capillarity, morphometry, and oxidative capacity seen previously at G7. At G15, mean body weight was significantly lower (P < 0.
View Article and Find Full Text PDFFossilized insect specimens from the late Paleozoic Era (approximately 250 million years ago) were significantly larger than related extant species. Geologic estimates suggest that atmospheric oxygen in the late Paleozoic Era was 35%. These findings have led to a prominent hypothesis that insect body size may be limited by oxygen delivery.
View Article and Find Full Text PDFImagent is an IV injected contrast echocardiography agent designed to image the left ventricle after traversing the pulmonary circulation. We examined the effect of Imagent on pulmonary function by injecting either Imagent (n = 8) or equivalent volume of saline (n = 7) IV in randomly ordered 1, 8 and 16 mg/kg doses in dogs with preexisting pulmonary hypertension. We found that Imagent had no effects on cardiac output, pulmonary gas exchange, lung wet:dry ratio or static compliance.
View Article and Find Full Text PDFWe previously showed that after seven generations of artificial selection of rats for running capacity, maximal O2 uptake (VO2max) was 12% greater in high-capacity (HCR) than in low-capacity runners (LCR). This difference was due exclusively to a greater O2 uptake and utilization by skeletal muscle of HCR, without differences between lines in convective O2 delivery to muscle by the cardiopulmonary system (QO2max). The present study in generation 15 (G15) female rats tested the hypothesis that continuing improvement in skeletal muscle O2 transfer must be accompanied by augmentation in QO2max to support VO2max of HCR.
View Article and Find Full Text PDFDeveloping vertebrates increase both their locomotory power output and endurance due to ontogenetic improvements in anaerobic and aerobic metabolic capacities. Do similar patterns hold for insect locomotion, or do longer tracheal lengths create problems for oxygen delivery in older animals? We forced developing American locust grasshoppers (Schistocerca americana) to jump repeatedly and examined the effect of development on power output, endurance, lactate concentration, oxygen consumption and the oxygen sensitivity of jump performance. As previously shown, power outputs, relative leg lengths and leg cuticular content increased with age.
View Article and Find Full Text PDFDoes oxygen delivery become more challenging for insects as they increase in size? To partially test this hypothesis, we used quantitative light and electron microscopy to estimate the oxygen delivery capacity for two steps of tracheal oxygen delivery within the metathoracic femur (jumping leg) for 2nd instar (about 47 mg) and adult (about 1.7 g) locusts, Schistocerca americana. The fractional cross-sectional areas of the major tracheae running longitudinally along the leg were similar in adults and 2nd instars; however, since the legs of adults are longer, the mass-specific diffusive conductances of these tracheae were 4-fold greater in 2nd instars.
View Article and Find Full Text PDF