Background: Cortical stimulation (CS) combined with rehabilitative training (RT) has proven effective for enhancing poststroke functional recovery in rats, but human clinical trials have had mixed outcomes.
Objective: To assess the efficacy of CS/RT versus RT in a nonhuman primate model of cortical ischemic stroke.
Methods: Squirrel monkeys learned a pellet retrieval task, then received an infarct to the distal forelimb (DFL) representation of primary motor cortex.
After cortical injury resulting from stroke, some recovery can occur and may involve spared areas of the cerebral cortex reorganizing to assume functions previously controlled by the damaged cortical areas. No studies have specifically assessed gene expression changes in remote neurons with axonal processes that terminate in the infarcted tissue, i.e.
View Article and Find Full Text PDFUnderstanding the neural bases for grip force behaviors in both normal and neurologically impaired animals is imperative prior to improving treatments and therapeutic approaches. The present paper describes a novel device for the assessment of power grip forces in squirrel monkeys. The control of grasping and object manipulation represents a vital aspect of daily living by allowing the performance of a wide variety of complex hand movements.
View Article and Find Full Text PDFUnilateral forelimb sensorimotor cortex lesions in adult rats produce a compensatory hyper-reliance on the forelimb ipsilateral to the lesion and temporally related glial and neural plasticity in the contralateral homotopic cortex. Recently, we found that these lesions enhance acquisition of a motor skills task with the ipsilateral, non-impaired, forelimb in comparison to shams. This effect might be related to a denervation-induced facilitation of neuroplastic changes in the motor cortex opposite the lesion and/or to the lesion-induced hyper-reliance on the non-impaired forelimb.
View Article and Find Full Text PDFThe relevance of careful behavioral measures and manipulations in animal research on neural plasticity and brain damage has become increasingly clear. Recent research in adult rats indicates that an understanding of neural restructuring after brain damage requires an understanding of how it is influenced by postinjury behavioral experiences. Other research indicates that optimizing pharmacological and other treatments for brain damage may require their combination with rehabilitative training.
View Article and Find Full Text PDFIn humans and other animals, sufficient unilateral damage to the sensorimotor cortex can cause impairments in the opposite forelimb and the development of a hyper-reliance on the nonimpaired limb. This hyper-reliance is adaptive to the extent that it contributes to functional compensation for lesion-induced impairments. We have found that unilateral lesions of the forelimb region of the sensorimotor cortex (FLsmc) in rats, or callosal transections, cause neurons of the opposite motor cortex to become exceptionally responsive to changes in forelimb behavior.
View Article and Find Full Text PDFPreviously, the authors found that partial denervation of the motor cortex in adult animals can enhance this region's neuronal growth response to relevant behavioral change. Rats with partial corpus callosum transections that were forced to rely on one forelimb for 18 days had increased dendritic arborization of layer V pyramidal neurons in the opposite motor cortex compared to controls. This was not found as a result of denervation alone or of forced forelimb use alone.
View Article and Find Full Text PDF