Protein lysine methyltransferases (KMTs) have emerged as important regulators of epigenetic signaling. These enzymes catalyze the transfer of donor methyl groups from the cofactor S-adenosylmethionine to specific acceptor lysine residues on histones, leading to changes in chromatin structure and transcriptional regulation. These enzymes also methylate an array of nonhistone proteins, suggesting additional mechanisms by which they influence cellular physiology.
View Article and Find Full Text PDFModest success rates in fragment-based lead generation (FBLG) projects at AstraZeneca (AZ) prompted operational changes to improve performance. In this review, we summarize these changes, emphasizing the construction and composition of the AZ fragment library, screening practices and working model. We describe the profiles of the screening method for specific fragment subsets and statistically assess our ability to follow up on fragment hits through near-neighbor selection.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2014
The discovery and optimization of a series of 6-aryl-azabenzimidazole inhibitors of TBK1 and IKK-ε is described. Various internal azabenzimidazole leads and reported TBK1/IKK-ε inhibitors were docked into a TBK1 homology model. The resulting overlays inspired a focused screen of 6-substituted azabenzimidazoles against TBK1/IKK-ε.
View Article and Find Full Text PDFThe design, synthesis and biological evaluation of a series of azabenzimidazole derivatives as TBK1/IKKε kinase inhibitors are described. Starting from a lead compound 1a, iterative design and SAR exploitation of the scaffold led to analogues with nM enzyme potencies against TBK1/IKKε. These compounds also exhibited excellent cellular activity against TBK1.
View Article and Find Full Text PDFProtein lysine methyltransferases are important regulators of epigenetic signaling. These enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine to specific acceptor lysines on histones, leading to changes in chromatin structure and transcriptional regulation. These enzymes also methylate nonhistone protein substrates, revealing an additional mechanism to regulate cellular physiology.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2009
Humic like substances (HULIS) are important components of atmospheric aerosols, yet little is known about their photochemical transformation and the role of adsorbed water in this photochemistry. We report herein in situ and surface-sensitive spectroscopic studies on (1) the photodegradation of solid tannic acid, (2) structure of adsorbed water before and after photodegradation, and (3) the change in the hydrophilicity of tannic acid as a result of this photochemistry. Tannic acid (TA) was chosen as a synthetic proxy for HULIS because it has a defined molecular structure.
View Article and Find Full Text PDFA series of amidoheteroaryl compounds were designed and synthesized as inhibitors of B-Raf kinase. Several compounds from the series show excellent potency in biochemical, phenotypic and mode of action cellular assays. Potent examples from the series have also demonstrated good plasma exposure following an oral dose in rodents and activity against the Ras-Raf pathway in tumor bearing mice.
View Article and Find Full Text PDFThe organoarsenical p-arsanilic acid (p-AsA) is used in the U.S. poultry industry as a feed additive and its structure resembles one of the stable biodegradation products of Roxarsone (ROX) in anaerobic environments.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2003
To improve the pharmacokinetics of a previously reported series of dipeptidyl nitrile cathepsin B inhibitors, the P(2)-P(3) amide group was replaced with an arylamine. Further optimization of this template resulted in highly potent and selective inhibitors with excellent oral availability.
View Article and Find Full Text PDF