Publications by authors named "Scott Cherry"

Proteases that recognize linear amino acid sequences with high specificity became indispensable tools of recombinant protein technology for the removal of various fusion tags. Due to its stringent sequence specificity, the catalytic domain of the nuclear inclusion cysteine protease of tobacco etch virus (TEV PR) is also a widely applied reagent for enzymatic removal of fusion tags. For this reason, efforts have been made to improve its stability and modify its specificity.

View Article and Find Full Text PDF

Dihydroneopterin aldolase (DHNA) is essential for folate biosynthesis in microorganisms. Without a counterpart in mammals, DHNA is an attractive target for antimicrobial agents. infection occurs in human stomach of over 50% of the world population, but first-line therapies for the infection are facing rapidly increasing resistance.

View Article and Find Full Text PDF

C/EBPβ is a key regulator of numerous cellular processes, but it can also contribute to tumorigenesis and viral diseases. It binds to specific DNA sequences (C/EBP sites) and interacts with other transcription factors to control expression of multiple eukaryotic genes in a tissue and cell-type dependent manner. A body of evidence has established that cell-type-specific regulatory information is contained in the local DNA sequence of the binding motif.

View Article and Find Full Text PDF

ATP-dependent Lon proteases are key participants in the quality control system that supports the homeostasis of the cellular proteome. Based on their unique structural and biochemical properties, Lon proteases have been assigned in the MEROPS database to three subfamilies (A, B, and C). All Lons are single-chain, multidomain proteins containing an ATPase and protease domains, with different additional elements present in each subfamily.

View Article and Find Full Text PDF

N-hydroxylating flavin-dependent monooxygenases (FMOs) are involved in the biosynthesis of hydroxamate siderophores, playing a key role in microbial virulence. Herein, we report the first structural and kinetic characterization of a novel alkyl diamine N-hydroxylase DesB from Streptomyces sviceus (SsDesB). This enzyme catalyzes the first committed step in the biosynthesis of desferrioxamine B, a clinical drug used to treat iron overload disorders.

View Article and Find Full Text PDF

Rapid adaptation to environmental changes is crucial for bacterial survival. Almost all bacteria possess a conserved stringent response system to prompt transcriptional and metabolic responses toward stress. The adaptive process relies on alarmones, guanosine pentaphosphate (pppGpp), and tetraphosphate (ppGpp), to regulate global gene expression.

View Article and Find Full Text PDF

Energy-dependent Lon proteases play a key role in cellular regulation by degrading short-lived regulatory proteins and misfolded proteins in the cell. The structure of the catalytically inactive S679A mutant of LonA protease (Lon) has been determined by cryo-EM at the resolution of 3.5 Å.

View Article and Find Full Text PDF

Clozapine is the most effective treatment for patients with refractory schizophrenia. Clozapine is also associated with serious and potentially lethal side effects including drug induced lupus (DIL). There have been four previous published case reports describing clozapine inducing a lupus-like syndrome including one previous case where a clozapine rechallenge was attempted without success.

View Article and Find Full Text PDF

Chemical library screening approaches that focus exclusively on catalytic events may overlook unique effects of protein-protein interactions that can be exploited for development of specific inhibitors. Phosphotyrosyl (pTyr) residues embedded in peptide motifs comprise minimal recognition elements that determine the substrate specificity of protein tyrosine phosphatases (PTPases). We incorporated aminooxy-containing amino acid residues into a 7-residue epidermal growth factor receptor (EGFR) derived phosphotyrosine-containing peptide and subjected the peptides to solution-phase oxime diversification by reacting with aldehyde-bearing druglike functionalities.

View Article and Find Full Text PDF

The dual specificity phosphatase DUSP1 was the first mitogen activated protein kinase phosphatase (MKP) to be identified. It dephosphorylates conserved tyrosine and threonine residues in the activation loops of mitogen activated protein kinases ERK2, JNK1 and p38-alpha. Here, we report the crystal structure of the human DUSP1 catalytic domain at 2.

View Article and Find Full Text PDF

Although affinity tags are highly effective tools for the expression and purification of recombinant proteins, they generally need to be removed prior to structural and functional studies. This chapter describes a simple method for overproducing a soluble form of a stable variant of tobacco etch virus (TEV) protease in Escherichia coli and a protocol for purifying it to homogeneity so that it can be used as a reagent for removing affinity tags from recombinant proteins by site-specific endoproteolysis. Further, we cleave a model substrate protein (MBP-NusG) in vitro using the purified TEV protease to illustrate a protease cleavage protocol that can be employed for simple pilot experiments and large-scale protein preparations.

View Article and Find Full Text PDF

Objective: Clozapine is the gold-standard antipsychotic medication for treatment-refractory schizophrenia (TRS). However, one potentially lethal side effect of clozapine, as with other antipsychotics, is neuroleptic malignant syndrome (NMS) which could present differently in clozapine therapy. 'Atypical NMS' is a recognised variant of NMS with less rigidity and delayed elevation of creatine kinase; this variant is associated with clozapine.

View Article and Find Full Text PDF

Protein tyrosine phosphatases dephosphorylate tyrosine residues of proteins, whereas, dual specificity phosphatases (DUSPs) are a subgroup of protein tyrosine phosphatases that dephosphorylate not only Tyr(P) residue, but also the Ser(P) and Thr(P) residues of proteins. The DUSPs are linked to the regulation of many cellular functions and signaling pathways. Though many cellular targets of DUSPs are known, the relationship between catalytic activity and substrate specificity is poorly defined.

View Article and Find Full Text PDF

Objective: This is the first study of workers' compensation injuries and costs in Department of Defense workers that examined whether any demographic factors including age, sex, occupation, and nature of injury altered the risks or costs of an injury or illness over time.

Methods: Department of Defense Workers' Compensation claims for period 2000 to 2008 were analyzed (n = 142,115) using Defense Portal Analysis and Defense Manpower Data Center to calculate injury rates and costs. Regression analysis was done using SPSS to examine the change in the risk of injury or illness over time from 2000 to 2008.

View Article and Find Full Text PDF

4-Nitrophenyl phosphate (p-nitrophenyl phosphate, pNPP) is widely used as a small molecule phosphotyrosine-like substrate in activity assays for protein tyrosine phosphatases. It is a colorless substrate that upon hydrolysis is converted to a yellow 4-nitrophenolate ion that can be monitored by absorbance at 405 nm. Therefore, the pNPP assay has been widely adopted as a quick and simple method to assess phosphatase activity and is also commonly used in assays to screen for inhibitors.

View Article and Find Full Text PDF

Members of the C/EBP family of transcription factors bind to the Taz2 domain of p300/CBP and mediate its phosphorylation through the recruitment of specific kinases. Short sequence motifs termed homology boxes A and B, which comprise their minimal transactivation domains (TADs), are conserved between C/EBP activators and are necessary for specific p300/CBP binding. A possible mode of interaction between C/EBP TADs and the p300 Taz2 domain was implied by the crystal structure of a chimeric protein composed of residues 1723-1818 of p300 Taz2 and residues 37-61 of C/EBPℇ.

View Article and Find Full Text PDF

Unlabelled: Two valid targets for antibiotic development, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS), catalyze consecutive reactions in folate biosynthesis. In Francisella tularensis (Ft), these two activities are contained in a single protein, FtHPPK-DHPS. Although Pemble et al.

View Article and Find Full Text PDF

Because of their stringent sequence specificity, the 3C-like proteases from tobacco etch virus (TEV) and human rhinovirus are often used for the removal of affinity tags. The latter enzyme is rumored to have greater catalytic activity at 4 °C, the temperature at which fusion protein substrates are usually digested. Here we report that experiments with fusion protein and peptide substrates confirm this conjecture.

View Article and Find Full Text PDF

We have developed competitive and direct binding methods to examine small-molecule inhibitors of protein tyrosine phosphatase activity. Focusing on the Yersinia pestis outer protein H, a potent bacterial protein tyrosine phosphatase, we describe how an understanding of the kinetic interactions involving Yersinia pestis outer protein H, peptide substrates, and small-molecule inhibitors of protein tyrosine phosphatase activity can be beneficial for inhibitor screening, and we further translate these results into a microarray assay for high-throughput screening.

View Article and Find Full Text PDF

CBP and its paralog p300 are histone acetyl transferases that regulate gene expression by interacting with multiple transcription factors via specialized domains. The structure of a segment of human p300 protein (residues 1723-1836) corresponding to the extended zinc-binding Taz2 domain has been investigated. The crystal structure was solved by the SAD approach utilizing the anomalous diffraction signal of the bound Zn ions.

View Article and Find Full Text PDF

Dual-specificity phosphatases (DUSPs) are enzymes that participate in the regulation of biological processes such as cell growth, differentiation, transcription and metabolism. A number of DUSPs are able to dephosphorylate phosphorylated serine, threonine and tyrosine residues on mitogen-activated protein kinases (MAPKs) and thus are also classified as MAPK phosphatases (MKPs). As an increasing number of DUSPs are being identified and characterized, there is a growing need to understand their biological activities at the molecular level.

View Article and Find Full Text PDF

Coactivators CREB-binding protein and p300 play important roles in mediating the transcriptional activity of p53. Until now, however, no detailed structural information has been available on how any of the domains of p300 interact with p53. Here, we report the NMR structure of the complex of the Taz2 (C/H3) domain of p300 and the N-terminal transactivation domain of p53.

View Article and Find Full Text PDF

The tumor suppressor p53 functions as a transcriptional activator for many genes, including several key genes involved in cell cycle arrest and apoptosis. Following DNA damage-induced stress, p53 undergoes extensive posttranslational modification, resulting in increased stability and activity. Two critical cofactors for p53-mediated transactivation are the histone acetyltransferase paralogues CREB-binding protein (CBP) and p300.

View Article and Find Full Text PDF