Publications by authors named "Scott C Riley"

By using an appropriate in-line sampling system, it is possible to obtain representative samples of ballast water from the main ballast line. An important parameter of the sampling port is its "isokinetic diameter" (DISO), which is the diameter calculated to determine the velocity of water in the sample port relative to the velocity of the water in the main ballast line. The guidance in the U.

View Article and Find Full Text PDF

A volumetric approach for determining the fouling burden on surfaces is presented, consisting of a 3D camera imaging system with fine (5 μm) resolution. Panels immersed in an estuary on the southwest coast of Florida, USA were imaged and the data were used to quantify seasonal changes in the biofouling community. Test panels, which were submerged in seawater for up to one year, were analyzed before and after gentle scrubbing to quantify the biovolume of the total fouling community (ie soft and hard organisms) and the hard fouling community.

View Article and Find Full Text PDF

Relatively large volumes of water-on the order of cubic meters-must be sampled and analyzed to generate statistically valid estimates of sparsely concentrated organisms, such as in treated ballast water. To this end, a third prototype of a shipboard filter skid (p3SFS) was designed and constructed. It consisted of two housings (each containing a 35 μm mesh filter bag) and its own pump and computer controller.

View Article and Find Full Text PDF

Vertical migrations of living organisms and settling of particle-attached organisms lead to uneven distributions of biota at different depths in the water column. In ballast tanks, heterogeneity could lead to different population estimates depending on the portion of the discharge sampled. For example, concentrations of organisms exceeding a discharge standard may not be detected if sampling occurs during periods of the discharge when concentrations are low.

View Article and Find Full Text PDF