Publications by authors named "Scott C Doney"

Scenarios to stabilize global climate and meet international climate agreements require rapid reductions in human carbon dioxide (CO) emissions, often augmented by substantial carbon dioxide removal (CDR) from the atmosphere. While some ocean-based removal techniques show potential promise as part of a broader CDR and decarbonization portfolio, no marine approach is ready yet for deployment at scale because of gaps in both scientific and engineering knowledge. Marine CDR spans a wide range of biotic and abiotic methods, with both common and technique-specific limitations.

View Article and Find Full Text PDF

Variations in atmosphere total column-mean CO (XCO) collected by the National Aeronautics and Space Administration's Orbiting Carbon Observatory-2 satellite can be used to constrain surface carbon fluxes if the influence of atmospheric transport and observation errors on the data is known and accounted for. Due to sparse validation data, the portions of fine-scale variability in XCO driven by fluxes, transport, or retrieval errors remain uncertain, particularly over the ocean. To better understand these drivers, we characterize variability in OCO-2 Level 2 version 10 XCO from the seasonal scale, synoptic-scale (order of days, thousands of kilometers), and mesoscale (within-day, hundreds of kilometers) for 10 biomes over North America and adjacent ocean basins.

View Article and Find Full Text PDF

Marine heterotrophic (or referred to as bacteria) play an important role in the ocean carbon cycle by utilizing, respiring, and remineralizing organic matter exported from the surface to deep ocean. Here, we investigate the responses of bacteria to climate change using a three-dimensional coupled ocean biogeochemical model with explicit bacterial dynamics as part of the Coupled Model Intercomparison Project Phase 6. First, we assess the credibility of the century-scale projections (2015-2099) of bacterial carbon stock and rates in the upper 100 m layer using skill scores and compilations of the measurements for the contemporary period (1988-2011).

View Article and Find Full Text PDF

One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.

View Article and Find Full Text PDF

The C incubation method for net primary production (NPP) has limited spatial/temporal resolution, while satellite approaches cannot provide direct information at depth. With chlorophyll-a and backscatter measurements from BGC-Argo floats, we quantified year-round NPP in the western North Atlantic Ocean using both the Carbon-based Productivity Model (CbPM) and Photoacclimation Productivity Model (PPM). Comparison with NPP profiles from C incubation measurements showed advantages and limitations of both models.

View Article and Find Full Text PDF

Every night across the world's oceans, numerous marine animals arrive at the surface of the ocean to feed on plankton after an upward migration of hundreds of metres. Just before sunrise, this migration is reversed and the animals return to their daytime residence in the dark mesopelagic zone (at a depth of 200-1,000 m). This daily excursion, referred to as diel vertical migration (DVM), is thought of primarily as an adaptation to avoid visual predators in the sunlit surface layer and was first recorded using ship-net hauls nearly 200 years ago.

View Article and Find Full Text PDF

Coastal water clarity varies at high temporal and spatial scales due to weather, climate, and human activity along coastlines. Systematic observations are crucial to assessing the impact of water clarity change on aquatic habitats. In this study, Secchi disk depths (Z) from Boston Harbor, Buzzards Bay, Cape Cod Bay, and Narragansett Bay water quality monitoring organizations were compiled to validate Z derived from Landsat 8 (L8) imagery, and to generate high spatial resolution Z maps.

View Article and Find Full Text PDF

We assess scientific evidence that has emerged since the U.S. Environmental Protection Agency's 2009 Endangerment Finding for six well-mixed greenhouse gases and find that this new evidence lends increased support to the conclusion that these gases pose a danger to public health and welfare.

View Article and Find Full Text PDF

Ocean acidification has the potential to significantly impact both aquaculture and wild-caught mollusk fisheries around the world. In this work, we build upon a previously published integrated assessment model of the US Atlantic Sea Scallop (Placopecten magellanicus) fishery to determine the possible future of the fishery under a suite of climate, economic, biological, and management scenarios. We developed a 4x4x4x4 hypercube scenario framework that resulted in 256 possible combinations of future scenarios.

View Article and Find Full Text PDF

New production (New P, the rate of net primary production (NPP) supported by exogenously supplied limiting nutrients) and net community production (NCP, gross primary production not consumed by community respiration) are closely related but mechanistically distinct processes. They set the carbon balance in the upper ocean and define an upper limit for export from the system. The relationships, relative magnitudes and variability of New P (from NO uptake), O : argon-based NCP and sinking particle export (based on the U : Th disequilibrium) are increasingly well documented but still not clearly understood.

View Article and Find Full Text PDF

The western Antarctic Peninsula (WAP) is a bellwether of global climate change and natural laboratory for identifying interactions between climate and ecosystems. The Palmer Long-Term Ecological Research (LTER) project has collected data on key ecological and environmental processes along the WAP since 1993. To better understand how key ecological parameters are changing across space and time, we developed a novel seascape classification approach based on in situ temperature, salinity, chlorophyll a, nitrate + nitrite, phosphate, and silicate.

View Article and Find Full Text PDF

Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean.

View Article and Find Full Text PDF

The U.S. Northeast Continental Shelf is experiencing rapid warming, with potentially profound consequences to marine ecosystems.

View Article and Find Full Text PDF

Many global change stresses on terrestrial and marine ecosystems affect not only ecosystem services that are essential to humankind, but also the trajectory of future climate by altering energy and mass exchanges with the atmosphere. Earth system models, which simulate terrestrial and marine ecosystems and biogeochemical cycles, offer a common framework for ecological research related to climate processes; analyses of vulnerability, impacts, and adaptation; and climate change mitigation. They provide an opportunity to move beyond physical descriptors of atmospheric and oceanic states to societally relevant quantities such as wildfire risk, habitat loss, water availability, and crop, fishery, and timber yields.

View Article and Find Full Text PDF

Wintertime convective mixing plays a pivotal role in the sub-polar North Atlantic spring phytoplankton blooms by favoring phytoplankton survival in the competition between light-dependent production and losses due to grazing and gravitational settling. We use satellite and ocean reanalyses to show that the area-averaged maximum winter mixed layer depth is positively correlated with April chlorophyll concentration in the northern Labrador Sea. A simple theoretical framework is developed to understand the relative roles of winter/spring convection and gravitational sedimentation in spring blooms in this region.

View Article and Find Full Text PDF

Coral cover has been declining in recent decades due to increased temperatures and environmental stressors. However, the extent to which different stressors contribute both individually and in concert to bleaching and mortality is still very uncertain. We develop and use a novel regression approach, using non-linear parametric models that control for unobserved time invariant effects to estimate the effects on coral bleaching and mortality due to temperature, solar radiation, depth, hurricanes and anthropogenic stressors using historical data from a large bleaching event in 2005 across the Caribbean.

View Article and Find Full Text PDF

Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate-change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity.

View Article and Find Full Text PDF

The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO anomalies.

View Article and Find Full Text PDF

Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification.

View Article and Find Full Text PDF

Understanding the mechanisms by which climate variability affects multiple trophic levels in food webs is essential for determining ecosystem responses to climate change. Here we use over two decades of data collected by the Palmer Long Term Ecological Research program (PAL-LTER) to determine how large-scale climate and local physical forcing affect phytoplankton, zooplankton and an apex predator along the West Antarctic Peninsula (WAP). We show that positive anomalies in chlorophyll-a (chl-a) at Palmer Station, occurring every 4-6 years, are constrained by physical processes in the preceding winter/spring and a negative phase of the Southern Annular Mode (SAM).

View Article and Find Full Text PDF

Management of marine ecosystems increasingly demands comprehensive and quantitative assessments of ocean health, but lacks a tool to do so. We applied the recently developed Ocean Health Index to assess ocean health in the relatively data-rich US west coast region. The overall region scored 71 out of 100, with sub-regions scoring from 65 (Washington) to 74 (Oregon).

View Article and Find Full Text PDF

The ocean plays a critical role in supporting human well-being, from providing food, livelihoods and recreational opportunities to regulating the global climate. Sustainable management aimed at maintaining the flow of a broad range of benefits from the ocean requires a comprehensive and quantitative method to measure and monitor the health of coupled human–ocean systems. We created an index comprising ten diverse public goals for a healthy coupled human–ocean system and calculated the index for every coastal country.

View Article and Find Full Text PDF

For more than a decade there has been controversy in oceanography regarding the metabolic state of the oligotrophic subtropical gyres of the open ocean. Here we review the background of this controversy, commenting on several issues to set the context for a moderated debate between two groups of scientists. In one of the two companion articles, Williams et al.

View Article and Find Full Text PDF