Publications by authors named "Scott C Baraban"

The expansion of the human family, resulting in a human-specific paralog likely contributed to altered evolutionary brain features. The introduction of in mouse models is associated with changes in cortical neuronal migration, axon guidance, synaptogenesis, and sensory-task performance. Truncated SRGAP2C heterodimerizes with the full-length ancestral gene product SRGAP2A and antagonizes its functions.

View Article and Find Full Text PDF

Dravet syndrome is a severe genetic epilepsy primarily caused by mutations in a voltage-activated sodium channel gene (). Patients face life-threatening seizures that are largely resistant to available anti-seizure medications. Preclinical Dravet syndrome animal models are a valuable tool to identify candidate anti-seizure medications for these patients.

View Article and Find Full Text PDF

Interneuron progenitor transplantation can ameliorate disease symptoms in a variety of neurological disorders. The strategy is based on transplantation of embryonic medial ganglionic eminence (MGE) progenitors. Elucidating how host brain environment influences the integration of interneuron progenitors is critical for optimizing this strategy across different disease states.

View Article and Find Full Text PDF

Impairment of development, migration, or function of inhibitory interneurons are key features of numerous circuit-based neurological disorders, such as epilepsy. From a therapeutic perspective, symptomatic treatment of these disorders often relies upon drugs or deep brain stimulation approaches to provide a general enhancement of GABA-mediated inhibition. A more effective strategy to target these pathological circuits and potentially provide true disease-modifying therapy, would be to selectively add new inhibitory interneurons into these circuits.

View Article and Find Full Text PDF

Background: Domoic acid (DA) is a naturally occurring neurotoxin harmful to marine animals and humans. California sea lions exposed to DA in prey during algal blooms along the Pacific coast exhibit significant neurological symptoms, including epilepsy with hippocampal atrophy.

Observations: Here the authors describe a xenotransplantation procedure to deliver interneuron progenitor cells into the damaged hippocampus of an epileptic sea lion with suspected DA toxicosis.

View Article and Find Full Text PDF

CRISPR-Cas9-generated zebrafish carrying a 12 base-pair deletion in stxbpb1b, a paralog sharing 79% amino acid sequence identity with human, exhibit spontaneous electrographic seizures during larval stages of development. Zebrafish stxbp1b mutants provide an efficient preclinical platform to test antiseizure therapeutics. The present study was designed to test antiseizure medications approved for clinical use and two recently identified repurposed drugs with antiseizure activity.

View Article and Find Full Text PDF

Impaired synaptic neurotransmission may underly circuit alterations contributing to behavioral autism spectrum disorder (ASD) phenotypes. A critical component of impairments reported in somatosensory and prefrontal cortex of ASD mouse models are parvalbumin (PV)-expressing fast-spiking interneurons. However, it remains unknown whether PV interneurons mediating hippocampal networks crucial to navigation and memory processing are similarly impaired.

View Article and Find Full Text PDF

Danio rerio (zebrafish) are a powerful experimental model for genetic and developmental studies. Adaptation of zebrafish to study seizures was initially established using the common convulsant agent pentylenetetrazole (PTZ). Larval PTZ-exposed zebrafish exhibit clear behavioral convulsions and abnormal electrographic activity, reminiscent of interictal and ictal epileptiform discharge.

View Article and Find Full Text PDF

Neurological and psychiatric disorders are associated with pathological neural dynamics. The fundamental connectivity patterns of cell-cell communication networks that enable pathological dynamics to emerge remain unknown. Here, we studied epileptic circuits using a newly developed computational pipeline that leveraged single-cell calcium imaging of larval zebrafish and chronically epileptic mice, biologically constrained effective connectivity modeling, and higher-order motif-focused network analysis.

View Article and Find Full Text PDF

mutations are associated with encephalopathy, developmental delay, intellectual disability, and epilepsy. While neural networks are known to operate at a critical state in the healthy brain, network behavior during pathological epileptic states remains unclear. Examining activity during periods between well-characterized ictal-like events (i.

View Article and Find Full Text PDF

Genetic engineering techniques have contributed to the now widespread use of zebrafish to investigate gene function, but zebrafish-based human disease studies, and particularly for neurological disorders, are limited. Here we used CRISPR-Cas9 to generate 40 single-gene mutant zebrafish lines representing catastrophic childhood epilepsies. We evaluated larval phenotypes using electrophysiological, behavioral, neuro-anatomical, survival and pharmacological assays.

View Article and Find Full Text PDF

Energy-producing pathways are novel therapeutic targets for the treatment of neurodevelopmental disorders. Here, we focussed on correcting metabolic defects in a catastrophic paediatric epilepsy, Dravet syndrome which is caused by mutations in sodium channel NaV1.1 gene, .

View Article and Find Full Text PDF

Interneurons contribute to the complexity of neural circuits and maintenance of normal brain function. Rodent interneurons originate in embryonic ganglionic eminences, but developmental origins in other species are less understood. Here, we show that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents, delineating a distinct medial ganglionic eminence (MGE) progenitor domain.

View Article and Find Full Text PDF

Dravet syndrome is a catastrophic epilepsy of childhood, characterized by cognitive impairment, severe seizures, and increased risk for sudden unexplained death in epilepsy (SUDEP). Although refractory to conventional antiepileptic drugs, emerging preclinical and clinical evidence suggests that modulation of the endocannabinoid system could be therapeutic in these patients. Preclinical research on this topic is limited as cannabis, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), are designated by United States Drug Enforcement Agency (DEA) as illegal substances.

View Article and Find Full Text PDF

Dravet syndrome is a life-threatening early-onset epilepsy not well controlled by antiepileptic drugs. Drugs that modulate serotonin (5-HT) signalling, including clemizole, locaserin, trazodone and fenfluramine, have recently emerged as potential treatment options for Dravet syndrome. To investigate the serotonin receptors that could moderate this antiepileptic activity, we designed and synthesized 28 novel analogues of clemizole, obtained receptor binding affinity profiles, and performed screening in a mutant zebrafish () model which recapitulates critical clinical features of Dravet syndrome.

View Article and Find Full Text PDF

Seizures are characterized by hypersynchronization of neuronal networks. Understanding these networks could provide a critical window for therapeutic control of recurrent seizure activity, i.e.

View Article and Find Full Text PDF

Epilepsy is a common chronic neurological disease affecting almost 3 million people in the United States and 50 million people worldwide. Despite availability of more than two dozen FDA-approved anti-epileptic drugs (AEDs), one-third of patients fail to receive adequate seizure control. Specifically, pediatric genetic epilepsies are often the most severe, debilitating and pharmaco-resistant forms of epilepsy.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML version of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

The postnatal functions of the Dlx1&2 transcription factors in cortical interneurons (CINs) are unknown. Here, using conditional Dlx1, Dlx2, and Dlx1&2 knockouts (CKOs), we defined their roles in specific CINs. The CKOs had dendritic, synaptic, and survival defects, affecting even PV+ CINs.

View Article and Find Full Text PDF

Mutations in FOXC1 and PITX2 constitute the most common causes of ocular anterior segment dysgenesis (ASD), and confer a high risk for secondary glaucoma. The genetic causes underlying ASD in approximately half of patients remain unknown, despite many of them being screened by whole exome sequencing. Here, we performed whole genome sequencing on DNA from two affected individuals from a family with dominantly inherited ASD and glaucoma to identify a 748-kb deletion in a gene desert that contains conserved putative PITX2 regulatory elements.

View Article and Find Full Text PDF

Objective: A significant proportion of the more than 50 million people worldwide currently suffering with epilepsy are resistant to antiepileptic drugs (AEDs). As an alternative to AEDs, novel therapies based on cell transplantation offer an opportunity for long-lasting modification of epileptic circuits. To develop such a treatment requires careful preclinical studies in a chronic epilepsy model featuring unprovoked seizures, hippocampal histopathology, and behavioral comorbidities.

View Article and Find Full Text PDF

Loss-of-function mutations in cause Dravet syndrome (DS), a catastrophic childhood epilepsy in which patients experience comorbid behavioral conditions, including movement disorders, sleep abnormalities, anxiety, and intellectual disability. To study the functional consequences of voltage-gated sodium channel mutations, we use zebrafish with a loss-of-function mutation in , a zebrafish homolog of human . Homozygous mutants exhibit early-life seizures, metabolic deficits, and early death.

View Article and Find Full Text PDF

Hemizygous mutations in the human gene encoding platelet-activating factor acetylhydrolase IB subunit alpha (Pafah1b1), also called Lissencephaly-1, can cause classical lissencephaly, a severe malformation of cortical development. Children with this disorder suffer from deficits in neuronal migration, severe intellectual disability, intractable epilepsy and early death. While many of these features can be reproduced in Pafah1b1 mice, the impact of Pafah1b1 on the function of individual subpopulations of neurons and ultimately brain circuits is largely unknown.

View Article and Find Full Text PDF

The tragedy of epilepsy emerges from the combination of its high prevalence, impact upon sufferers and their families, and unpredictability. Childhood epilepsies are frequently severe, presenting in infancy with pharmaco-resistant seizures; are often accompanied by debilitating neuropsychiatric and systemic comorbidities; and carry a grave risk of mortality. Here, we review the most current basic science and translational research findings on several of the most catastrophic forms of pediatric epilepsy.

View Article and Find Full Text PDF