Publications by authors named "Scott Busby"

The COVID-19 pandemic highlights the ongoing risk of zoonotic transmission of coronaviruses to global health. To prepare for future pandemics, it is essential to develop effective antivirals targeting a broad range of coronaviruses. Targeting the essential and clinically validated coronavirus main protease (M), we constructed a structurally diverse M panel by clustering all known coronavirus sequences by M active site sequence similarity.

View Article and Find Full Text PDF

Assays drive drug discovery from the exploratory phases to the clinical testing of drug candidates. As such, numerous assay technologies and methodologies have arisen to support drug discovery efforts. Robust identification and characterization of tractable chemical matter requires biochemical, biophysical, and cellular approaches and often benefits from high-throughput methods.

View Article and Find Full Text PDF

Nicotinamide phosphoribosyltransferase is a key metabolic enzyme that is a potential target for oncology. Utilizing publicly available crystal structures of NAMPT and in silico docking of our internal compound library, a NAMPT inhibitor, 1, obtained from a phenotypic screening effort was replaced with a more synthetically tractable scaffold. This compound then provided an excellent foundation for further optimization using crystallography driven structure based drug design.

View Article and Find Full Text PDF

One of the central questions in the characterization of enzyme inhibitors is determining the mode of inhibition (MOI). Classically, this is done with a number of low-throughput methods in which inhibition models are fitted to the data. The ability to rapidly characterize the MOI for inhibitors arising from high-throughput screening in which hundreds to thousands of primary inhibitors may need to be characterized would greatly help in lead selection efforts.

View Article and Find Full Text PDF

The thiazolidinediones (TZD) typified by rosiglitazone are the only approved therapeutics targeting PPARγ for the treatment of type-2 diabetes (T2DM). Unfortunately, despite robust insulin sensitizing properties, they are accompanied by a number of severe side effects including congestive heart failure, edema, weight gain, and osteoporosis. We recently identified PPARγ antagonists that bind reversibly with high affinity but do not induce transactivation of the receptor, yet they act as insulin sensitizers in mouse models of diabetes (SR1664).

View Article and Find Full Text PDF

Dengue virus (DENV) is the most significant mosquito-borne viral pathogen in the world and is the cause of dengue fever. The DENV RNA-dependent RNA polymerase (RdRp) is conserved among the four viral serotypes and is an attractive target for antiviral drug development. During initiation of viral RNA synthesis, the polymerase switches from a "closed" to "open" conformation to accommodate the viral RNA template.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) monitors cellular energy, regulates genes involved in ATP synthesis and consumption, and is allosterically activated by nucleotides and synthetic ligands. Analysis of the intact enzyme with hydrogen/deuterium exchange mass spectrometry reveals conformational perturbations of AMPK in response to binding of nucleotides, cyclodextrin, and a synthetic small molecule activator, A769662. Results from this analysis clearly show that binding of AMP leads to conformational changes primarily in the γ subunit of AMPK and subtle changes in the α and β subunits.

View Article and Find Full Text PDF

The nuclear receptor (NR) superfamily is composed of 48 members in humans and includes receptors for steroid hormones, thyroid hormone, various lipids and oxysterols. This superfamily has been a rich source of drug targets for myriad diseases including inflammation, cancer, and metabolic disorders. Approximately half of the superfamily have well characterized natural ligands whereas the remaining receptors are considered orphan receptors and remain a focus of a number of investigators assessing their ability to be regulated by ligands.

View Article and Find Full Text PDF

PPARγ is the functioning receptor for the thiazolidinedione (TZD) class of antidiabetes drugs including rosiglitazone and pioglitazone. These drugs are full classical agonists for this nuclear receptor, but recent data have shown that many PPARγ-based drugs have a separate biochemical activity, blocking the obesity-linked phosphorylation of PPARγ by Cdk5. Here we describe novel synthetic compounds that have a unique mode of binding to PPARγ, completely lack classical transcriptional agonism and block the Cdk5-mediated phosphorylation in cultured adipocytes and in insulin-resistant mice.

View Article and Find Full Text PDF

Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine (DLPC)) is an LRH-1 agonist ligand in vitro.

View Article and Find Full Text PDF

The vitamin D receptor (VDR) functions as an obligate heterodimer in complex with the retinoid X receptor (RXR). These nuclear receptors are multidomain proteins, and it is unclear how various domains interact with one another within the nuclear receptor heterodimer. Here, we show that binding of intact heterodimer to DNA alters the receptor dynamics in regions remote from the DNA-binding domains (DBDs), including the coactivator binding surfaces of both co-receptors, and that the sequence of the DNA response element can determine these dynamics.

View Article and Find Full Text PDF

Retinoids are potent forms of vitamin A and are involved in a broad range of physiological processes and the pharmacological effects of retinoids are primarily mediated by the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Several natural and synthetic RAR modulators have proven to be clinically useful for a number of therapeutic indications including cancer, psoriasis, and diabetes. Unfortunately, these agents lead to a number of significant side effects.

View Article and Find Full Text PDF

Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation.

View Article and Find Full Text PDF

The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor γ (PPARγ) is involved in expression of genes that control glucose and lipid metabolism. PPARγ is the molecular target of the thiazolidinedione (TZD) class of antidiabetic drugs. However, despite their clinical use these drugs are associated with numerous adverse effects, which are related to their full activation of PPARγ transcriptional responses.

View Article and Find Full Text PDF

Retinoic acid receptor-related orphan receptors (RORs) regulate a variety of physiological processes including hepatic gluconeogenesis, lipid metabolism, circadian rhythm, and immune function. Here we present the first high-affinity synthetic ligand for both RORalpha and RORgamma. In a screen against all 48 human nuclear receptors, the benzenesulfonamide liver X receptor (LXR) agonist N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide (T0901317) inhibited transactivation activity of RORalpha and RORgamma but not RORbeta.

View Article and Find Full Text PDF

Human carbonic anhydrase II (HCA II) is a monomeric zinc-containing metalloenzyme that catalyzes the hydration of CO(2) to form bicarbonate and a proton. The properties of the zinc have been extensively elucidated in catalysis but less well studied as a contributor to structure and stability. Apo-HCA II (without zinc) was prepared and compared to holo-HCA II: in crystallographic structural features, in backbone amide H/D exchange, and in thermal stability.

View Article and Find Full Text PDF

Collagen serves as a structural scaffold and a barrier between tissues, and thus collagen catabolism (collagenolysis) is required to be a tightly regulated process in normal physiology. In turn, the destruction or damage of collagen during pathological states plays a role in tumor growth and invasion, cartilage degradation, or atherosclerotic plaque formation and rupture. Several members of the matrix metalloproteinase (MMP) family catalyze the hydrolysis of collagen triple helical structure.

View Article and Find Full Text PDF

Here we describe an integrated software platform titled HD Desktop designed specifically to enhance the analysis of hydrogen/deuterium exchange (HDX) mass spectrometry data. HD Desktop integrates tools for data extraction with visualization components within a single web-based application. The interface design enables users to navigate from the peptide view to the sample and experiment levels, tracking all manipulations while updating the aggregate graphs in real time.

View Article and Find Full Text PDF

Binding to helix 12 of the ligand-binding domain of PPARgamma is required for full agonist activity. Previously, the degree of stabilization of the activation function 2 (AF-2) surface was thought to correlate with the degree of agonism and transactivation. To examine this mechanism, we probed structural dynamics of PPARgamma with agonists that induced graded transcriptional responses.

View Article and Find Full Text PDF

The peroxisome proliferator-activated receptor is a member of the nuclear receptor superfamily of transcriptional regulators. Regulation of the nuclear receptors occurs through changes to the structure and dynamics of the ligand-binding domain. Therefore, the need has arisen for a rapid method capable of detecting changes in the dynamics of nuclear receptors following ligand binding.

View Article and Find Full Text PDF

Histone post-translational modifications have been recently intensely studied owing to their role in regulating gene expression. Here, we describe protocols for the characterization of histone modifications in both qualitative and semiquantitative manners using chemical derivatization and tandem mass spectrometry. In these procedures, extracted histones are first derivatized using propionic anhydride to neutralize charge and block lysine residues, and are subsequently digested using trypsin, which, under these conditions, cleaves only the arginine residues.

View Article and Find Full Text PDF