Background/objectives: The body burden of mercury in humans can be measured through hair or blood biomarkers. To compare results from different studies, it is often required to convert mercury in hair to an equivalent level in blood, using a default hair:blood ratio of 250:1 by the World Health Organization (WHO). However, the actual ratio may vary within and between populations.
View Article and Find Full Text PDFUsing synchrotron x-ray fluorescence mapping, we have examined the uptake and localization of organic mercury in zebrafish larvae. Strikingly, the greatest accumulation of methyl and ethyl mercury compounds was highly localized in the rapidly dividing lens epithelium, with lower levels going to brain, optic nerve, and various other organs. The data suggest that the reported impairment of visual processes by mercury may arise not only from previously reported neurological effects, but also from direct effects on the ocular tissue.
View Article and Find Full Text PDFThe toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown.
View Article and Find Full Text PDFSemin Cell Dev Biol
October 2003
Recent work in the zebrafish, Danio rerio, indicates that heat shock genes are expressed in unique spatial patterns under non-stress conditions. In particular, hsp90alpha is expressed during the normal differentiation of striated muscle fibres, and hsp70-4 is expressed during normal lens development in the eye. Furthermore, disruption of the activity of either of these genes or their protein products gives rise to unique embryonic phenotypes that result from failures in proper somitic muscle development and lens development, respectively.
View Article and Find Full Text PDFEnviron Health Perspect
October 2002
The toxic effects of cadmium and other heavy metals have been well established, and many of these and other environmental pollutants are known to be embryotoxic or teratogenic. However, it has proven difficult to identify individual cells that respond to toxicants among the wide range of cell populations in an intact animal, particularly during early development when cells are continually changing their molecular and physiologic characteristics as they differentiate. Here we report the establishment of an in vivo system that uses hsp70 gene activation as a measure of cadmium toxicity in living early larvae of transgenic zebrafish carrying a stably integrated hsp70-enhanced green fluorescent protein (eGFP) reporter gene.
View Article and Find Full Text PDFIn the present study, we show that the stress-inducible hsp70 gene in zebrafish is strongly and specifically expressed during normal lens formation from 28 to 38 hours post-fertilization, and is subsequently downregulated by 2 days of age. Only weak constitutive hsp70 mRNA signal was sporadically observed in other embryonic tissues. Similarly, transgenic fish carrying a 1.
View Article and Find Full Text PDF